THE BRENIER-SCHRÖDINGER PROBLEM WITH RESPECT TO FELLER SEMIMARTINGALES AND NON-LOCAL HAMILTON-JACOBI-BELLMAN EQUATIONS

RONAN HERRY AND BAPTISTE HUGUET

Abstract

Motivated by a problem from incompressible fluid mechanics of Brenier [Bre89], and its recent entropic relaxation by [ACLZ20], we study a problem of entropic minimization on the path space when the reference measure is a generic Feller semimartingale. We show that, under some regularity condition, our problem connects naturally with a, possibly non-local, version of the Hamilton-JacobiBellman equation. Additionally, we study existence of minimizers when the reference measure in a Ornstein-Uhlenbeck process.

CONTENTS

1. Introduction 1
2. Reminders and notation 2
3. The Brenier-Schrödinger problem with respect to a Feller semimartingale 8
4. Existence of solutions for the Ornstein-Uhlenbeck problem 10

References 13

1. INTRODUCTION

1.1. Main result. We study the so-called Brenier-Schrödinger problem with respect to a reference measure R, that is the law of a Feller martingale on $[0,1]$. This problem consists in minimizing the relative entropy of the law P of another process Y under the marginal constraints:
(i) $Y_{t} \sim \mu_{t}$, for all $t \in[0,1]$, where $\left(\mu_{t}\right)$ is the data of a family of probability measure.
(ii) $\left(Y_{0}, Y_{1}\right) \sim \pi$, where π is the data of a coupling of the endpoints.

By definition of the relative entropy, every minimizer is absolutely continuous with respect to R. It particular, P is also the law of a semimartingale, and the log-density process Z is a semimartingale. Actually, conditionally on $\left\{X_{0}=x\right\}, Z$ is of the form

$$
Z_{t}=A_{t^{-}}+\psi_{t}^{x}\left(X_{t}\right)
$$

where A is an additive functional, and $(t, z) \mapsto \psi_{t}^{x}(z)$ is some function. We say that the minimizer P is regular provided the associated ψ^{x} is \mathscr{C}^{1} in time, \mathscr{C}^{2} in space, and the semimartingale $\psi^{x}(X)$ is special (see definitions below). We recall that a semimartingale is special as soon as it has bounded jumps. In particular, every continuous semimartingale is special. Our main result is as follows.

Theorem. Consider a regular solution P of the aforementioned problem, and the associated ψ^{x}. Then, the additive functional A is absolutely continuous. In particular, there exists a function $p:[0,1] \times \mathbb{R}^{n} \rightarrow$ \mathbb{R} such that

$$
\begin{equation*}
A_{t}=\int_{0}^{t} p_{t}\left(X_{s}\right) \mathrm{d} s, \quad t \in[0,1] \tag{1.1}
\end{equation*}
$$

Moreover, ψ^{x} is a solution to the generalized Hamilton-Jacobi-Bellman equation

$$
\begin{equation*}
\partial_{t} \psi^{x}+\mathrm{e}^{-\psi_{t}^{x}} \mathbf{A}\left(\mathrm{e}^{\psi_{t}^{x}}\right)+p_{s}=0 \tag{1.2}
\end{equation*}
$$

where \mathbf{A} denotes the Markov generator of R .
Remark 1.1. Let us make some comments on the result:
(a) When R is a Markov diffusion, then $\mathbf{A} u(x)=\frac{1}{2} c(x) \cdot \nabla^{2} u(x)+b \cdot \nabla u(x)$, for some diffusion matrix c and drift vector b. By the chain rule (1.2) becomes

$$
\partial_{t} \psi_{t}^{x}+\mathbf{A} \psi^{x}+\frac{1}{2} \nabla \psi_{t}^{x} \cdot c \nabla \psi_{t}^{x}+p_{t}=0
$$

which is the usual Hamilton-Jacobi-Bellman equation with pressure.
(b) The function p is interpreted as a pressure field.
(c) In the classical Hamilton-Jacobi-Bellman equation, the term \mathbf{A} would have a negative sign. This phenomenon also has been observed in [ACLZ20]. It can be circumvent by considering the potential ψ associated to the time-reversed measure.

Verifying that there exist regular minimizers is an arduous task, that, in the Brownian case amounts to solve the Navier-Stokes equation (see [ACLZ20] for details). We do not take on such an accomplishment. More modestly, additionally to our main theorem, we show that there exists a minimizer, possibly non-regular, when R is the law of an Ornstein-Uhlenbeck process.
1.2. Motivations and connections to the literature. Understanding what happens to the BrenierSchrödinger problem for general semimartingales, possibly with a jump part is the main motivation for this paper. The Brenier-Schrödinger problem, defined in [ACLZ20], is a relaxation of Brenier's approach [Bre89] to incompressible perfect fluids and Euler equations. This generalization, which can be seen as the entropic relaxation of Brenier original problem, aims at modelling viscous fluid dynamics. The achievements of [ACLZ20] are threefold.
(i) When the reference measure R is Markovian, they study the general shape of minimizers.
(ii) Whenever the reference measure R is the law of a reversible Brownian motion on \mathbb{R}^{n} or $(\mathbb{R} \backslash \mathbb{Z})^{n}$, they show that minimizers of a certain form give rise to solution to the Navier-Stokes equation.
(iii) On the torus, they show that minimizers always exists, whenever $\mu_{t}=$ vol for all t, and the coupling π has finite entropy relatively to the R_{01}.
The two last points are extended to the compact manifold setting in [GH22]. Let us stress that the particular form of the minimizer needed in [ACLZ20] is stronger than our regularity condition. Indeed, they need to assume the existence of the function p such that (1.1) holds, while (1.1) follows from our analysis. Thus, even in the purely continuous case, our result is less restrictive than that of [ACLZ20].

In the Brownian case, when the noise tends to 0, one recovers in the limit Brenier's original problem of minimization of the kinetic energy, as illustrated in [BM20]. In our possibly non-local setting, understanding the appropriate notion of small noise limit, and whether there exists a equivalent of Brenier's problem is an interesting question that could be explored in future works.
1.3. Outline of the proof. Our proof follows the lines of [ACLZ20]. We use, on the one hand, Itō's formula, and on the other hand, Girsanov theorem to give two different representations of the semimartingale Z. At the technical level, since Z is a special semimartingale, it thus admits a unique decomposition as a sum of a local martingale, and predictable process of finite variations. This allows us to identify the two different decompositions and conclude. In the continuous case, as for the Brownian setting of [ACLZ20], the semimartingale is always special and this assumption is unnecessary.

2. REMINDERS AND NOTATION

2.1. Semimartingales and their characteristics. We refer to [JS03] for more details.
2.1.1. Path space. Let Ω denote the space of right-continuous with left-limit paths from $[0,1]$ to \mathbb{R}^{n}. The canonical process on Ω is denoted by X, that is

$$
X_{t}(\omega):=\omega_{t}, \quad \omega \in \Omega, t \in[0,1]
$$

The associated canonical filtration defined by

$$
\mathfrak{F}_{t}:=\bigcap_{s>t} \sigma\left(X_{r}: 0 \leq r \leq s\right), \quad t \in[0,1]
$$

Conveniently for $\mathrm{P} \in \mathscr{P}(\Omega)$, we write P_{t} for the law of X_{t} under P , $\mathrm{P}_{t s}$ for the law of $\left(X_{t}, X_{s}\right)$ under P , and so on.
2.1.2. Processes. An adapted process is a mapping $Y: \Omega \rightarrow \Omega$ such that Y_{t} is \mathfrak{F}_{t}-measurable for all $t \in[0,1]$. By definition, all our processes are right-continuous with left-limit. For such Y, its jump process is

$$
\Delta Y_{t}:=Y_{t}-Y_{t-}, \quad t \in[0,1] .
$$

We say that Y is predictable whenever seen as the mapping

$$
[0,1] \times \Omega \ni(t, \omega) \mapsto Y_{t}(w)
$$

it is measurable with respect to the σ-algebra generated by $F \times(t, s]$ for $s<t$ and $F \in \mathfrak{F}_{s}$. A process of finite variation is an adapted process $A=B-C$ with B and C two non decreasing adapted processes. In that case the variation of A is the process $B+C$. We also consider generalized adapted (resp. predictable) processes of the form $W: \Omega \times \mathbb{R}^{n} \rightarrow \Omega$.
2.1.3. Martingales \& semimartingales. Fix $\mathrm{P} \in \mathscr{P}(\Omega)$. A martingale (or a P-martingale to emphasize the dependence on P) is an adapted process such that:

$$
\mathbf{E}_{\mathrm{P}}\left[M_{t} \mid \mathfrak{F}_{s}\right]=M_{s}, \quad 0 \leq s \leq t \leq 1
$$

We say that X is a semimartingale under P provided

$$
\begin{equation*}
X=X_{0}+M+A \tag{2.1}
\end{equation*}
$$

where M is a P -martingale, and A is a finite variation process (P -almost surely). The decomposition (2.1) is not unique.
2.1.4. Special semimartingales. If A can be chosen predictable in (2.1), we say that the semimartingale is special. By [JS03, pp. I.4.23-24], a semimartingale is special if and only if, in (2.1), A can be chosen with P-integrable variation, and that a martingale is special as soon as its jump are bounded.
2.1.5. Canonical jumps measure. We consider the canonical jumps process and the canonical jumps measure

$$
\begin{aligned}
& \Delta X_{s}:=X_{s}-X_{s-}, \quad s \in[0,1] \\
& \mu_{t}:=\sum_{s \leq t} \delta_{\left(s, \Delta X_{s}\right)} \mathbf{1}_{\Delta X_{s} \neq 0}
\end{aligned}
$$

The measure μ is a random element of $\mathcal{M}\left([0,1] \times \mathbb{R}^{d}\right)$, the set of Borel measures on $[0,1] \times \mathbb{R}^{d}$. For a, possibly random, measure $\lambda \in \mathcal{M}\left([0,1] \times \mathbb{R}^{n}\right)$, and a generalized process W, we write

$$
(W * \lambda)_{t}:=\int_{0}^{t} \int_{\mathbb{R}^{n}} W_{s}(y) \lambda(\mathrm{d} s \mathrm{~d} y), \quad t \in[0,1] .
$$

2.1.6. Compensator of the jumps measure. For all $P \in \mathscr{P}(\Omega)$, there exists a unique predictable measure ν such that

$$
\left[\mathbf{E}_{\mathrm{P}}[|W| * \mu]<\infty\right] \Rightarrow\left[\mathbf{E}_{\mathrm{P}}[|W| * \nu]<\infty, \text { and } W * \mu-W * \nu \text { is a P-martingale }\right] .
$$

We call ν the compensator of μ (under P).
2.1.7. Characteristics of a semimartingale. We fix $h(y):=y \mathbf{1}_{|y| \leq 1}$. The big-jumps removed version of X is

$$
X^{h}:=X-(y-h) * \mu .
$$

If X is a semimartingale under P , then X^{h} is a special semimartingale. Thus, there exists a unique decomposition

$$
X^{h}=X_{0}+M^{h}+B^{h}
$$

with M^{h} a martingale, and B^{h} predictable. We call $\left(B^{h}, C, v\right)$ the characteristics of the semimartingale, where C is the quadratic variation of the continuous part of X, and ν the compensator.

Remark 2.1. In general, it is not known whether a semimartingale with prescribed characteristics exists, nor if the characteristics characterise P.
2.1.8. Representation of semimartingales with given characteristics. Let R be a semimartingale with characteristics $\left(B^{h}, C, v\right)$. Then, by [JS03, Thm. II.2.34], we have

$$
X=X_{0}+X^{c}+h *\left(\mu^{X}-v\right)+(y-h) * \mu^{X}+B^{h}
$$

2.2. Markov processes and related concepts.

2.2.1. Shift semi-group. We consider the shift semi-group

$$
Y_{s} \circ \theta_{t}=Y_{t+s}, \quad t, s \in[0,1] .
$$

2.2.2. Time reversal. We consider the canonical time-reversed process

$$
X_{t}^{*}:=X_{1-t}, \quad t \in[0,1] .
$$

We write \mathfrak{F}^{*} for the associated filtration.
2.2.3. Markov process. A process $\mathrm{P} \in \mathscr{P}(\Omega)$ is Markov provided,

$$
\mathrm{P}\left(X_{t+s} \in B \mid \mathfrak{F}_{t}\right)=\mathrm{P}\left(X_{s} \in B \mid X_{t}\right)
$$

We shall use the following less common alternative characterization. The process $\mathrm{P} \in$ is Markov if and only if

$$
\mathrm{P}\left(C \cap C^{*} \mid X_{t}\right)=\mathrm{P}\left(C \mid X_{t}\right) \mathrm{P}\left(C^{*} \mid X_{t}\right), \quad t \in[0,1], C \in \mathfrak{F}_{t}, C^{*} \in \mathfrak{F}_{t}^{*}
$$

2.2.4. Additive functionals. An adapted process A is an additive functional provided $A_{0}=0$ and

$$
A_{t+s}=A_{s}+A_{t} \circ \theta_{s} .
$$

We identify every additive functional with the random additive set function by letting for $s<t$:

$$
\begin{aligned}
& A_{[s, t]}:=A_{t-s} \circ \theta_{s}, \\
& A_{[s, t)}:=A_{(t-s)^{-}} \circ \theta_{s}, \\
& A_{(s, t]}:=A_{(t-s)} \circ \theta_{s^{-}}, \\
& A_{(s, t)}:=A_{(t-s)^{-}} \circ \theta_{s^{-}} .
\end{aligned}
$$

2.2.5. Reciprocal measure. We say that P is reciprocal provided

$$
\mathrm{P}\left(X_{s} \in B \mid \mathfrak{F}_{r}, \mathfrak{F}_{t}^{*}\right)=\mathrm{P}\left(X_{s} \in B \mid X_{r}, X_{t}\right), \quad r \leq s \leq t
$$

As for Markov processes, we repeatedly use the alternative characterization: P is reciprocal if and only if

$$
\begin{aligned}
& 0 \leq s \leq t \leq 1, C \in \mathfrak{F}_{s}, C^{*} \in \mathfrak{F}_{t}^{*}, A \in \sigma\left(X_{u}: s \leq u \leq t\right) \Rightarrow \\
& \mathrm{P}\left(C \cap A \cap C^{*} \mid X_{s}, X_{t}\right)=\mathrm{P}\left(C \cap A \mid X_{s}, X_{t}\right) \mathrm{P}\left(C^{*} \cap A \mid X_{s}, X_{t}\right) .
\end{aligned}
$$

Clearly, all Markov processes are also reciprocal. We have that whenever P is reciprocal, then P^{x} is Markov.
2.3. Feller processes and their generators. We follow [BSW13].
2.3.1. Feller semi-groups. A Feller semi-group is a Markov semi-group (\mathbf{T}_{t}) such that

$$
\left\|\mathbf{T}_{t} u-u\right\|_{\infty} \underset{t \rightarrow 0}{ } 0, \quad u \in \mathscr{C}_{0}\left(\mathbb{R}^{d}\right)
$$

2.3.2. Infinitesimal generator. The infinitesimal generator of a Feller semi-group $\left(\mathbf{T}_{t}\right)$ is the unique unbounded operator \mathbf{A} with

$$
\begin{aligned}
& \mathscr{D}(\mathbf{A}):=\left\{u \in \mathscr{C}_{0}\left(\mathbb{R}^{d}\right): \lim _{t \rightarrow 0} \frac{\mathbf{T}_{t} u-u}{t} \text { exists }\right\}, \\
& \mathbf{A} u:=\lim _{t \rightarrow 0} \frac{\mathbf{T}_{t} u-u}{t}
\end{aligned}
$$

The generator \mathbf{A} is densely-defined and closed.
2.3.3. Feller processes and martingales. Let $\mathrm{P} \in \mathscr{P}(\Omega)$ be the law of a Feller process associated with the Feller semi-group (T_{t}), that is

$$
\mathbf{T}_{t} u(x)=\mathbf{E}_{\mathrm{P}}\left[u\left(X_{t}\right) \mid X_{0}=x\right], \quad x \in \mathbb{R}^{d}, t \in[0,1]
$$

Then, for all $f \in \mathscr{D}(\mathbf{A})$, the process

$$
M_{t}:=f\left(X_{t}\right)-f\left(X_{0}\right)-\int_{0}^{t} \mathbf{A} f\left(X_{s}\right) \mathrm{d} s, \quad t \in[0,1]
$$

is a P -martingale.
2.3.4. Lévy triplet of a Feller process. In the rest of the paper, we always assume that $\mathscr{D}(\mathbf{A})$ contains the smooth functions $\mathscr{C}_{c}^{\infty}\left(\mathbb{R}^{d}\right)$. In this case, by [Cou67], there exist:
(i) $\alpha: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$;
(ii) $b^{h}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$;
(iii) $c: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d \times d}$ symmetric non-negative;
(iv) $N: \mathbb{R}^{d} \rightarrow \mathcal{M}\left(\mathbb{R}^{d} \backslash\{0\}\right)$ with $\int_{\mathbb{R}^{d}}\left(|y|^{2} \wedge 1\right) N(x, \mathrm{~d} y)<\infty$;
such that

$$
\begin{align*}
\mathbf{A} u(x) & =-\alpha(x) u(x)+b^{h}(x) \cdot \nabla u(x)+\frac{1}{2} \nabla^{2} u(x) \cdot c(x) \\
& +\int_{\mathbb{R}^{d} \backslash\{0\}}(u(x+y)-u(x)-\nabla u(x) \cdot h(y)) N(x, \mathrm{~d} y) . \tag{2.2}
\end{align*}
$$

2.3.5. Feller processes and semimartingales. Let $\mathrm{P} \in \mathscr{P}(\Omega)$ be the law of a Feller process with Lévy triplet $\left(b^{h}, c, N\right)$. Then P is a semimartingale with characteristics

$$
\begin{align*}
& B_{t}^{h}=\int_{0}^{t} b^{h}\left(X_{s}\right) \mathrm{d} s \\
& C_{t}=\int_{0}^{t} c\left(X_{s}\right) \mathrm{d} s \tag{2.3}\\
& v(\mathrm{~d} s, \mathrm{~d} y)=N\left(X_{s}, \mathrm{~d} y\right) \mathrm{d} s
\end{align*}
$$

2.4. Examples of Feller semi-groups.

2.4.1. Heat semi-group. Let R be the law of the Wiener process on \mathbb{R}^{d}. Consider the associated Feller semi-group:

$$
\mathbf{T}_{t} u(x):=\int_{\mathbb{R}^{d}} \mathrm{e}^{-|y-x|^{2} / 2 t} \frac{\mathrm{~d} y}{(2 \pi t)^{d / 2}}
$$

Then $\mathbf{A}=-\frac{1}{2} \Delta$. The invariant measure is the Lebesgue measure.
2.4.2. Poisson semi-group. Let $\mathrm{R} \in \mathscr{P}(\Omega)$ be the law of the Poisson process on \mathbb{R}^{d} with intensity $\lambda>0$ and jumping towards $z \in \mathbb{R}^{d}$. The associated Feller semi-group is

$$
\mathbf{T}_{t} u(x):=\sum_{k \in \mathbb{N}} u(x+k z) \frac{(\lambda t)^{j}}{j!} \mathrm{e}^{-t \lambda}
$$

Its generator is $\mathbf{A} u(x)=\lambda(u(x+z)-u(x))$. The invariant measure is the counting measure.
2.4.3. Symmetric stable semi-groups. Let R be the law of the α-stable symmetric, with $\alpha \in(0,2)$. The associated Feller semi-group is

$$
\mathbf{T}_{t} u(x):=\int u(x+y) p_{\alpha, t}(\mathrm{~d} y)
$$

where $p_{\alpha, t}$ satisfies

$$
\widehat{p}_{\alpha, t}(\xi)=\mathrm{e}^{-t|\xi|^{\alpha}}
$$

Then the generator is

$$
\mathbf{A} u(x):=k_{\alpha} \int_{\mathbb{R}^{d} \backslash\{0\}}(u(x+y)-u(x)-\nabla u(x) \cdot h(y)) \frac{\mathrm{d} y}{|y|^{\alpha+d}}
$$

2.4.4. Lévy processes. Let R be the law of a Lévy process on \mathbb{R}^{d}, that is

$$
\mathbf{T}_{t} u:=u * p_{t}
$$

where $\left(p_{t}\right)$ is a family of infinitely divisible distributions. In this case the Lévy triplet is independent of x, and the generator is

$$
\mathbf{A} u(x):=b^{h} \cdot \nabla u(x)+\frac{1}{2} \nabla \cdot(c \nabla u(x))+\int_{\mathbb{R}^{d} \backslash\{0\}}(u(x+y)-u(x)-\nabla u(x) \cdot h(y)) N(\mathrm{~d} y)
$$

2.4.5. Ornstein-Uhlenbeck stable semi-groups. Let R be the law of the α-stable symmetric process. The associated Ornstein-Uhlenbeck process Y satisfies, under R

$$
\mathrm{d} Y_{t}=\mathrm{d} X_{t}-Y_{t} \mathrm{~d} t
$$

By solving explicitly this equation, the associated semi-group is

$$
\mathbf{T}_{t} u(x):=\mathbf{E}_{\mathrm{R}}\left[u\left(\mathrm{e}^{t} x+\int_{0}^{t} \mathrm{e}^{s-t} \mathrm{~d} X_{s}\right) \mid X_{0}=x\right]
$$

In this case

$$
\mathbf{A} u(x)=-(-\Delta)^{\alpha / 2} u(x)-x \cdot \nabla u(x)
$$

The unique invariant measure is μ_{α} such that

$$
\widehat{\mu}_{\alpha}(\xi)=\mathrm{e}^{-\frac{1}{\alpha}|\xi|^{\alpha}}
$$

2.5. Relative entropy and Girsanov formula.

2.5.1. Relative entropy. We fix $\mathrm{R} \in \mathscr{P}(\Omega)$ a semimartingale with characteristics $\left(B^{h}, C, \nu\right)$. The relative entropy of with respect to R is the functional

$$
\mathcal{H}(\mathrm{P} \mid \mathrm{R}):= \begin{cases}\mathbf{E}_{\mathrm{P}}\left[\frac{\mathrm{dP}}{\mathrm{dR}}\right], & \text { if } \mathrm{P} \ll \mathrm{R} \\ +\infty, & \text { otherwise }\end{cases}
$$

Elements of $\mathscr{P}(\Omega)$ that are absolutely continuous with respect to to a semimartingale are again a semimartingales [JS03]. In particular, elements with finite entropy with respect to R are semimartingales. [Léo12] characterises their characteristics.
2.5.2. Girsanov theorem under finite entropy. We consider the functions $\theta: \mathbb{R} \ni u \mapsto \mathrm{e}^{u}-u-1$, and its convex conjugate

$$
\theta^{\star}: \mathbb{R} \ni v \mapsto \begin{cases}(v+1) \log (v+1)-v, & \text { if } v>-1 \\ 1, & \text { if } v=-1 \\ +\infty, & \text { otherwise }\end{cases}
$$

Theorem 2.2 ([Léo12, Thms. $1 \& 3]$). Then, for all $\mathrm{P} \in \mathscr{P}(\Omega)$ such that $\mathcal{H}(\mathrm{P} \mid \mathrm{R})<\infty$, there exist an adapted process β, and predictable non-negative generalized process ℓ such that

$$
\mathbf{E}_{\mathrm{p}} \int_{0}^{1} \beta_{s} \cdot C(\mathrm{~d} s) \beta_{s}+\mathbf{E}_{\mathrm{p}} \int_{0}^{1} \int_{\mathbb{R}^{d} \backslash\{0\}} \theta^{\star}\left(\left|\ell_{s}(y)-1\right|\right) \nu(\mathrm{d} s \mathrm{~d} y)<\infty .
$$

Moreover, P is a semimartingale with characteristics ($B^{h}+\tilde{B}, C, \ell \nu$), where

$$
\tilde{B}_{t}:=\int_{0}^{t} C(\mathrm{~d} s) \beta_{s}+\int_{0}^{t} \int_{\mathbb{R}^{d} \backslash\{0\}} h(y)\left(\ell_{s}(y)-1\right) v(\mathrm{~d} s \mathrm{~d} y) .
$$

Remark 2.3. [Léo12] states two different theorems, one continuous martingales, and another for pure jump martingales. Decomposing the semimartingale P in its continuous part and pure jump part, it is clear that the results carry out to the mixed case.
2.5.3. Density under finite entropy. Additionally to the Girsanov theorem, [Léo12] obtains an expression of the density in terms of the processes β and ℓ. Consider the log-density process

$$
Z_{t}:=\log \mathrm{E}_{\mathrm{R}}\left[\left.\frac{\mathrm{dP}}{\mathrm{dR}} \right\rvert\, \mathfrak{F}_{t}\right] .
$$

Proposition 2.4 ([Léo12, Thms. $2 \& 4]$). On the event $\left\{\frac{\mathrm{dP}}{\mathrm{dR}}>0\right\}$, we have $Z=Z^{c}+Z^{+}+Z^{-}$, where, under P

$$
\begin{aligned}
& Z_{t}^{c}:=\int_{0}^{t} \beta_{s} \cdot\left(\mathrm{~d} X_{s}-\mathrm{d} B_{s}^{h}-C(\mathrm{~d} s) \beta_{s}\right)+\frac{1}{2} \int_{0}^{t} \beta_{s} \cdot C(\mathrm{~d} s) \beta_{s} ; \\
& Z_{t}^{+}:=\int_{[0, t] \times \mathbb{R}_{*}^{d}} \mathbf{1}_{\left\{t \geq \frac{1}{2}\right\}} \log \ell \mathrm{d}\left(\mu^{X}-\ell \nu\right)+\int_{[0, t] \times \mathbb{R}_{*}^{d}} \mathbf{1}_{\left\{\ell \geq \frac{1}{2}\right\}} \theta(\ell-1) \mathrm{d} \nu \\
& Z_{t}^{-}=\int_{[0, t] \times \mathbb{R}_{*}^{d}} \mathbf{1}_{\left\{0 \leq \ell<\frac{1}{2}\right\}} \log \ell \mathrm{d} \mu^{X}+\int_{[0, t] \times \mathbb{R}_{*}^{d}} \mathbf{1}_{\left\{0 \leq t<\frac{1}{2}\right\}}(-\ell+1) \mathrm{d} \nu .
\end{aligned}
$$

Remark 2.5. (a) As noticed in [Léo12], on the event $\left\{\frac{d P}{d R}>0\right\}, \ell>0$ and the sum in the first integral of the definition of Z^{-}is finite.
(b) The exact value $1 / 2$ for the cut-off between Z^{+}and Z^{-}is artificial and could be chosen anywhere in $(0,1)$.
(c) This expression of Z does not provide a decomposition as the sum of P-local martingale and absolutely continuous process. Indeed, the stochastic integral $(\log \ell) *\left(\mu^{X}-\ell \nu\right)$ is meaningless, in general. Additional assumptions could guarantee that it makes sense.
2.5.4. Disintegration with respect to the initial condition. So far P_{0} could be arbitrary, we consider the regular disintegration of P along its marginal P_{0}. In this way, there exists a family $\left(\mathrm{P}^{x}\right)_{x \in \mathbb{R}^{d}}$ such that P^{x} is supported on $\left\{X_{0}=x\right\}$ and

$$
\mathrm{P}=\int \mathrm{P}^{x} \mathrm{P}_{0}(\mathrm{~d} x) .
$$

The semimartingale property, the Markov property, the special semimartingale property, and the Feller property are stable under this conditioning.
Remark 2.6. In particular, if R is a Markov measure, then all the R^{x} are also Markov. The data $\left(\Omega, \mathfrak{F},\left(X_{t}\right)_{t \in[0,1]},\left(\mathrm{R}^{x}\right)_{x \in \mathbb{R}^{d}}\right)$ is sometimes what is called a Markov process.
2.5.5. Chain rule for the entropy. By the chain rule for the entropy, [DZ10, Thm. D.13], it turns out that

$$
\begin{equation*}
\mathcal{H}(\mathrm{P} \mid \mathrm{R})=\mathcal{H}\left(\mathrm{P}_{0} \mid \mathrm{R}_{0}\right)+\int \mathcal{H}\left(\mathrm{P}^{x} \mid \mathrm{R}^{x}\right) \mathrm{P}_{0}(\mathrm{~d} x) \tag{2.4}
\end{equation*}
$$

In particular, if $\mathcal{H}(\mathrm{P} \mid \mathrm{R})<\infty$, and that R is a semimartingale, then all the $\mathrm{P}^{x}\left(x \in \mathbb{R}^{d}\right)$ are also semimartingales.

3. THE BRENIER-SCHRÖDINGER PROBLEM WITH RESPECT TO A FELLER SEMIMARTINGALE

3.1. Formulation of the problem.

3.1.1. Setting. In the rest of the paper, we fix $R \in \mathscr{P}(\Omega)$ a Feller semimartingale with characteristics as in (2.3). Let $\pi \in \mathscr{P}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$, that we interpret as a coupling between the initial and the final position. Let $\left(\mu_{t}\right)_{t \in[0,1]} \in \mathscr{P}\left(\mathbb{R}^{n}\right)^{[0,1]}$, that we interpret as the incompressibility condition. We study the Brenier-Schrödinger minimisation problem, with respect to the measure R

$$
\begin{equation*}
\inf \left\{\mathcal{H}(\mathrm{P} \mid \mathrm{R}): \mathrm{P} \in \mathscr{P}(\Omega), \forall t \in[0,1], P_{t}=\mu_{t}, P_{01}=\pi\right\} \tag{LBS}
\end{equation*}
$$

3.1.2. General shape of the solutions. By [ACLZ20, Thm. 4.7], every minimizer P in (LBS) is a reciprocal measure of the form

$$
\mathrm{P}=\exp \left(\eta\left(X_{0}, X_{1}\right)+A_{1}\right) \mathrm{R}
$$

for some Borel function $\eta: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ and an additive functional A. Conditioning at $\left\{X_{0}=x\right\}$, we find that

$$
\mathrm{P}^{x}=\exp \left(\eta\left(x, X_{1}\right)+A_{1}\right) \mathrm{R}^{x} .
$$

Using the additive property of A, we find that

$$
A_{1}=A_{[0,1]}=A_{t^{-}}+A_{[t, 1]} .
$$

It follows that the log-density process looks like

$$
Z_{t}^{x}:=\log \mathbf{E}_{\mathrm{R}^{x}}\left[\left.\frac{\mathrm{dP}^{x}}{\mathrm{dR}^{x}} \right\rvert\, \mathfrak{F}_{t}\right]=A_{t^{-}}+\log \mathbf{E}_{\mathrm{R}^{x}}\left[\exp \left(x, X_{1}\right)+A_{[t, 1]} \mid X_{t}\right]
$$

In view of this formula, let us define

$$
\begin{equation*}
\psi^{x}(t, z):=\log \mathbf{E}_{\mathbb{R}^{x}}\left[\exp \left(\eta\left(x, X_{1}\right)+A_{[t, 1]}\right) \mid X_{t}=z\right], \quad t \in[0,1], z \in \mathbb{R}^{d} \tag{3.1}
\end{equation*}
$$

With this definition, the above expression for Z^{x} reads

$$
Z_{t}^{x}=A_{t^{-}}+\psi^{x}\left(t, X_{t}\right)
$$

3.2. Non-local Hamilton-Jacobi-Bellman equation. Let us reformulate the main result of the paper with our introduced terminology and give the prove.

Theorem 3.1. Let $\mathrm{P} \in \mathscr{P}(\Omega)$ be a regular solution to (LBS). Then, there exists a function $p:[0,1] \times \mathbb{R}^{d}$, such that the potential ψ^{x} defined in (3.1), is a strong solution to

$$
\partial_{t} \psi_{t}^{x}(z)+\mathrm{e}^{-\psi_{t}^{x}(z)}\left(\mathbf{A} \mathrm{e}_{t}^{x}\right)(z)+\frac{1}{2} \nabla \psi_{s}^{x}(z) \cdot c(z) \nabla \psi_{s}^{x}(z)+p_{t}(z)=0
$$

The proof follows from two different representations of Z^{x} as a special martingale.
3.2.1. Decomposition using Itō's formula. For short, write

$$
J_{s}^{x}(y):=\psi_{s}^{x}\left(X_{s^{-}}+y\right)-\psi_{s}^{x}\left(X_{s^{-}}\right) .
$$

Lemma 3.2. Under P^{x}, the process $\psi^{x}(X)$ is a special martingale. Moreover, we have

$$
\begin{aligned}
\psi_{t}^{x}\left(X_{t}\right) & =\psi_{t}^{x}(x)+\int_{0}^{t} \nabla \psi_{s}^{x}\left(X_{s^{-}}\right) \cdot \mathrm{d} X_{s}^{c}+J *\left(\mu-\ell^{x} v\right)+\int_{0}^{t} \partial_{s} \psi_{s}^{x}\left(X_{s^{-}}\right) \mathrm{d} s \\
& +\int \nabla \psi_{s}^{x}\left(X_{s^{-}}\right) \cdot \mathrm{d} \bar{B}_{s}+\frac{1}{2} \int_{0}^{t} \nabla^{2} \psi_{s}^{x}\left(X^{s^{-}}\right) \cdot \mathrm{d} C_{s}+\int_{0}^{t}\left[J_{s}(y)-\nabla \psi_{s}^{x}\left(X_{s^{-}}\right) \cdot h(y)\right] v(\mathrm{~d} s \mathrm{~d} y)
\end{aligned}
$$

Proof. Since by assumption, R^{x} is a Feller semimartingale with characteristics $\left(B^{h}, C, v\right)$, by (2.4) and Theorem 2.2, we find that P^{x} is a semimartingale. Moreover, there exist an adapted process β^{x}
and a predictable non-negative process ℓ^{x} with characteristics ($\left.B^{h}+\tilde{B}^{x}, C, \ell^{x} \nu\right)$. For short, let us consider the local martingale M, the drift \bar{B}, and the generalized processes J and W defined by

$$
\begin{aligned}
& M:=X^{c}+h *\left(\mu-\ell^{x} v\right) \\
& \bar{B}:=B^{h}+B^{x} \\
& J_{s}(y):=\psi_{s}^{x}\left(X_{s^{-}}+y\right)-\psi_{s}^{x}\left(X_{s^{-}}\right) \\
& W_{s}(y):=J_{s}(y)-\nabla \psi_{s}^{x}\left(X_{s^{-}}\right) \cdot h(y)
\end{aligned}
$$

Since, by assumption, $\psi^{x}(X)$ is a special semi-martingale, the same argument as in [JS03, Thm. II.2.42] yields that $W * \mu-W *\left(e^{x} v\right)=W *\left(\mu-e^{x} v\right)$ is a local martingale, and

$$
\begin{aligned}
\psi_{t}^{x}\left(X_{t}\right) & =\psi_{t}^{x}(x)+\int_{0}^{t} \partial_{s} \psi_{s}^{x}\left(X_{s^{-}}\right) \mathrm{d} s+\int_{0}^{t} \nabla \psi_{s}^{x}\left(X_{s^{-}}\right) \cdot \mathrm{d} M_{s}+\int \nabla \psi_{s}^{x}\left(X_{s^{-}}\right) \cdot \mathrm{d} \bar{B}_{s} \\
& +\frac{1}{2} \int_{0}^{t} \nabla^{2} \psi_{s}^{x}\left(X_{s^{-}}\right) \cdot \mathrm{d} C_{s}+W *\left(\mu-\ell^{x} v\right)+W *\left(\ell^{x} v\right)
\end{aligned}
$$

We conclude by observing that

$$
\int_{0}^{t} \nabla \psi_{s}^{x}\left(X_{s^{-}}\right) \cdot \mathrm{d}\left(h *\left(\mu-e^{x} v\right)\right)+W *\left(\mu-\ell^{x} v\right)=J *\left(\mu-e^{x} v\right)
$$

3.2.2. Decomposition using Girsanov's theorem.

Lemma 3.3. The process $\left(\log \ell^{x}\right) *\left(\mu-\ell^{x} \nu\right)$ is a well-defined local martingale. Moreover, under P^{x},

$$
\begin{aligned}
Z_{t}^{x} & =\left(\log \ell^{x}\right) *\left(\mu-\ell^{x} v\right)+\int_{0}^{t} \beta_{s}^{x} \cdot \mathrm{~d} X_{s}^{c} \\
& +\int_{0}^{t} \int \theta^{\star}\left(\ell_{s}^{x}(y)-1\right) N\left(X_{s}, \mathrm{~d} y\right) \mathrm{d} s+\frac{1}{2} \int_{0}^{t} \beta_{s}^{x} \cdot c\left(X_{s}\right) \beta_{s}^{x} \mathrm{~d} s
\end{aligned}
$$

where the first line on the right-hand side is a local martingale, and the second line if a predictable process.

Proof. The regular solution assumption ensures that the measure P^{x} and R^{x} are equivalent. The part involving β^{x} follows directly from Proposition 2.4. In view of Proposition 2.4, it is sufficient to show that

$$
Z_{t}^{+}+Z_{t}^{-}=\left(\log \ell^{x}\right) *\left(\mu-\ell^{x} v\right)+\theta^{\star}\left(\ell^{x}-1\right) * \nu
$$

Recall that

$$
\begin{align*}
Z_{t}^{+}+Z_{t}^{-}= & \int_{[0, t] \times \mathbb{R}_{*}^{d}} \mathbf{1}_{\ell x \geq \frac{1}{2}} \log \left(\ell^{x}\right) \mathrm{d}\left(\mu-\ell^{x} \nu\right)+\int_{[0, t] \times \mathbb{R}_{*}^{d}} \mathbf{1}_{\ell x \geq \frac{1}{2}} \theta^{\star}\left(\ell^{x}-1\right) \mathrm{d} \nu \\
& +\int_{[0, t] \times \mathbb{R}_{*}^{d}} \mathbf{1}_{0 \leq \ell<\frac{1}{2}} \log \left(\ell^{x}\right) \mathrm{d} \mu+\int_{[0, t] \times \mathbb{R}_{*}^{d}} \mathbf{1}_{0 \leq \ell x<\frac{1}{2}}\left(-\ell^{x}+1\right) \mathrm{d} \nu \tag{3.2}
\end{align*}
$$

Since $e^{x} \mathbf{1}_{\ell x \geq 2} \log \left(\ell^{x}\right)$ and $\ell^{x}\left(\mathbf{1}_{1 / 2 \leq \ell<2} \log \left(\ell^{x}\right)\right)^{2}$ are dominated by $\theta^{*}(|\ell-1|)$, which is P x-integrable by Theorem 2.2, thus, by [JS03, II.1.27, p. 72], $\mathbf{1}_{\ell x \geq 1 / 2}\left(\log \ell^{x}\right)$ is a local martingale. The second and the fourth terms have P^{x}-integrable variations because they are also dominated by $\theta^{*}(|\ell-1|) * \nu$. Since Z^{x} is a special semimartingale, by [JS03, p. I.2.24], the third term also have P^{x}-integrable variations. This implies that the stochastic integral $\mathbf{1}_{0 \leq \ell<1 / 2} \log (\ell) *\left(\mu^{X}-\ell \nu\right)$ is well-defined and a local martingale. Moreover by [JS03, p. II.1.28], we have

$$
\mathbf{1}_{0 \leq \ell^{x}<1 / 2} \log \left(\ell^{x}\right) *\left(\mu-\ell^{x} v\right)=\mathbf{1}_{0 \leq \ell^{x}<1 / 2} \log \left(\ell^{x}\right) * \mu-\mathbf{1}_{0 \leq \ell^{x}<1 / 2} \log \left(\ell^{x}\right) *\left(\ell^{x} v\right)
$$

The proof is thus complete by compensating the third term in (3.2), and by using that the map $a \mapsto a *\left(\mu-\ell^{x} v\right)$ is linear.

3.2.3. Conclusion.

Proof of Theorem 3.1. By the uniqueness of the decomposition of a special semimartingale, comparing the expression for Z^{x} in Lemmas 3.2 and 3.3, we obtain by identification of the local martingale parts

$$
\begin{equation*}
\log \ell_{s}^{x}(y)=\psi_{s}^{x}\left(X_{s^{-}}+y\right)-\psi_{s}^{x}\left(X_{s^{-}}\right), \quad \text { and } \quad \beta_{s}^{x}=\nabla \psi_{\cdot}^{x}\left(X_{s^{-}}\right) \tag{3.3}
\end{equation*}
$$

By identification of the predictable part, we obtain

$$
\begin{aligned}
\theta^{\star}\left(\ell^{x}-1\right) * \nu_{s} & +\frac{1}{2} \int_{0}^{t} \beta_{s}^{x} \cdot C(\mathrm{~d} s) \beta_{s}^{x}=A_{s^{-}}+\psi_{0}^{x}(x)+\int_{0}^{t} \partial_{s} \psi_{s}^{x}\left(X_{s^{-}}\right) \mathrm{d} s \\
& +\frac{1}{2} \int_{0}^{t} \nabla^{2} \psi_{s}^{x}\left(X^{s^{-}}\right) \cdot \mathrm{d} C_{s}+\int_{0}^{t} \nabla \psi_{s}^{x}\left(X_{s^{-}}\right) \cdot \mathrm{d} B_{s}^{h}+\int_{0}^{t} \nabla \psi_{s}^{x}\left(X_{s^{-}}\right) C(\mathrm{~d} s) \beta_{s}^{x} \\
& +\int_{[0, t]^{\prime} * \mathbb{R}^{d} \backslash\{0\}} \nabla \psi_{s}^{x}\left(X_{s^{-}}\right) \cdot h \mathrm{~d}\left(\ell^{x}-1\right) v+\int_{[0, t] \times \mathbb{R}_{*}^{d}}\left[J_{s}-\nabla \psi_{s}^{x}\left(X_{s^{-}}\right) \cdot h\right] \mathrm{d}\left(\ell^{x} v\right) .
\end{aligned}
$$

Reporting (3.3) in the above, terms simplify and we arrive at

$$
\begin{aligned}
& -\int_{[0, t] \times \mathbb{R}_{*}^{d}}\left[\mathrm{e}^{J_{s}}-1-\nabla \psi_{s}^{x}\left(X_{s}\right) \cdot h(y)\right] \mathrm{d} v-\frac{1}{2} \int_{0}^{t} \nabla^{2} \psi_{s}^{x}\left(X_{s^{-}}\right) \cdot \mathrm{d} C_{s}-\frac{1}{2} \int_{0}^{t} \beta_{s}^{x} \cdot C(\mathrm{~d} s) \beta_{s}^{x} \\
& =A_{t^{-}}+\psi_{0}^{x}(x)+\int_{0}^{t} \partial_{s} \psi_{s}^{x}\left(X_{s^{-}}\right) \mathrm{d} s+\int_{0}^{t} \nabla \psi_{s}^{x}\left(X_{s^{-}}\right) \cdot \mathrm{d} B_{s}^{h}
\end{aligned}
$$

Recalling that the characteristics have the particular given in (2.3), we see, on the one hand, that A is actually absolutely continuous. Since A is an absolutely continuous additive functional there exist, there exists a pressure $p:=[0,1] \times \mathbb{R}^{d}$ such that

$$
A_{t}=\int_{0}^{t} p_{s}\left(X_{s}\right) \mathrm{d} s
$$

On the other hand, by differentiating with respect to t, we obtain

$$
\begin{aligned}
& \partial_{s} \psi_{s}^{x}\left(X_{s^{-}}\right)+p_{s}\left(X_{s}\right)=-\frac{1}{2} \nabla^{2} \psi_{s}^{x}\left(X_{s^{-}}\right) \cdot c\left(X_{s}\right)-\frac{1}{2} \nabla \psi_{s}^{x}\left(X_{s^{-}}\right) \cdot c\left(X_{s}\right) \nabla \psi_{s}^{x}\left(X_{s^{-}}\right) \\
& -\mathrm{e}^{-\psi_{t}^{x}\left(X_{t}\right)} \int_{\mathbb{R}_{*}^{d}}\left[\mathrm{e}^{\psi_{t}^{x}\left(X_{t}+y\right)}-\mathrm{e}^{\psi_{t}^{x}\left(X_{t}\right)}-\nabla \mathrm{e}^{\psi_{t}^{x}\left(X_{t}\right)} \cdot h(y)\right] N\left(X_{s}, \mathrm{~d} y\right)+\nabla \psi_{s}^{x}\left(X_{s^{-}}\right) \cdot b^{h}\left(X_{s^{-}}\right)
\end{aligned}
$$

This last equation is true P^{x} almost surely. To conclude from there, we use a continuity argument and the equivalence of P^{x} and R^{x}.

4. EXISTENCE OF SOLUTIONS FOR THE ORNSTEIN-UHLENBECK PROBLEM

Since the functional $\mathcal{H}(\cdot \mid \mathrm{R})$ is convex and lower semi-continuous on $\mathscr{P}(\Omega)$, by the direct method of the calculus of variations, we obtain immediately the following result.

Lemma 4.1. Assume that there exist $\mathrm{P} \in \mathscr{P}(\Omega)$, such that $\mathrm{P}_{01}=\pi, \mathrm{P}_{t}=\mu_{t}$ for all $t \in[0,1]$, and $\mathcal{H}(\mathrm{P} \mid$ $\mathrm{R})<\infty$. Then, there exists a unique minimizer to (LBS).

Thus, in relation with Theorem 3.1, we have to answer two questions:
(A) Can we find a candidate $\mathrm{P} \in \mathscr{P}(\Omega)$ for (LBS) with finite entropy?
(B) Is the unique solution to (LBS) regular?
[ACLZ20, Prop. 6.1] gives a positive answer to (A), when R is the reversible Brownian motion on the torus, $\mu_{t}=$ vol for all $t \in[0,1]$ (incompressible case), and π is any coupling satisfying $\mathcal{H}(\pi \mid$ $\left.\mathrm{R}_{01}\right)<\infty$. [GH22] studies the case of the reflected Brownian measure on some quotient spaces, and of a non-reversible Brownian measure in \mathbb{R}^{n}. In the latter case, the incompressible condition translates to Gaussian marginal constraints. All the results motioned above, the necessary and sufficient condition for existence is $\mathcal{H}\left(\pi \mid \mathrm{vol}^{2}\right)<+\infty$. In the Ornstein-Uhlenbeck case, we only manage to prove existence when π is a Gaussian of a certain form.

In this section, we obtain a positive answer to (A) when R is a reversible Brownian OrnsteinUhlenbeck process on \mathbb{R}. In the language of semimartingales, R as characteristics $\left(-X_{t}, \sqrt{2}, 0\right)$, and is started from a Gaussian distribution. In terms of stochastic differential equations, under R , the canonical process X satisfies

$$
\left\{\begin{array}{l}
\mathrm{d} X_{t}=\sqrt{2} \mathrm{~d} W_{t}-X_{t} \mathrm{~d} t \\
X_{0} \sim \gamma:=\mathcal{N}(0,1)
\end{array}\right.
$$

where W is an Brownian motion, under R , independent of X_{0}. The measure γ is the unique invariant measure of this process, thus we study (LBS) under the natural incompressible condition $\mu_{t}:=\gamma$ for all $t \in[0,1]$. Hence, we consider the minimisation problem Namely, our minimisation problem in this specific case only depends on the parameter $\pi \in \mathscr{P}\left(\mathbb{R}^{n} \times \mathbb{R}^{\mathbb{m}}\right)$, and reads

$$
\begin{equation*}
\inf \left\{\mathcal{H}(\mathrm{P} \mid \mathrm{R}): \mathrm{P} \in \mathscr{P}(\Omega), \mathrm{P}_{t}=\gamma \forall t \in[0,1], \mathrm{P}_{01}=\pi\right\} . \tag{4.1}
\end{equation*}
$$

For $|c| \leq 1$, let us write

$$
\gamma_{c}:=\mathcal{N}\left(0,\left(\begin{array}{ll}
1 & c \\
c & 1
\end{array}\right)\right)
$$

Our results in this case is as follows.
Proposition 4.2. Let $\pi:=\gamma_{c}$ with $4 e^{-1}-3 e^{-1 / 3} \leq c<1$. Then, the problem (4.1) admits a unique solution.

Remark 4.3. Since $\mathrm{P}_{0}=\mathrm{P}_{1}=\gamma$, we necessarily have that the variance under π is 1 . Also if $|c|:=1$, then π is degenerated and $\mathcal{H}\left(\pi \mid \mathrm{R}_{01}\right)$ is not finite and so the problem would not have any solution. Lastly, for the particular $c:=e^{-1}$, since $\pi=\mathrm{R}_{01}$, the problem admits the trivial solution $P=R$.

As in [ACLZ20; GH22], we create candidate path measures as mixture of R-bridges. In the setting of the Ornstein-Uhlenbeck process, we exploit the following explicit representation for the bridge

$$
\mathrm{R}^{x y}:=\mathrm{R}\left(\cdot \mid X_{0}=x, X_{T}=y\right), \quad x, y \in \mathbb{R}, T \in[0,1] .
$$

Lemma 4.4 ([BK13]). The Ornstein-Uhlenbeck bridge $\mathrm{R}^{x y}$ coincides with the law of the process

$$
U_{t}^{x, y}:=\frac{\sinh (T-t)}{\sinh (T)} x+\frac{\sinh (t)}{\sinh (T)} y+\sqrt{2} \int_{0}^{t} \frac{\sinh (T-t)}{\sinh (T-s)} \mathrm{d} W_{s},
$$

where W is a standard Brownian motion. In particular,

$$
\mathrm{R}_{t}^{x y}=\mathcal{N}\left(\frac{\sinh (T-t)}{\sinh (T)} x+\frac{\sinh (t)}{\sinh (T)} y, 2 \frac{\sinh (T-t) \sinh (t)}{\sinh (T)}\right)
$$

Let $T>0$ and $\sigma \in \mathscr{P}\left(\mathbb{R}^{2}\right)$. We define

$$
\begin{equation*}
\mathrm{Q}:=\int_{\mathbb{R}^{2}} \mathrm{R}^{x y} \sigma(\mathrm{~d} x \mathrm{~d} y) . \tag{4.2}
\end{equation*}
$$

The path measure Q is a mixture of Ornstein-Uhlenbeck bridges.
Remark 4.5. For Brownian bridges, [ACLZ20; GH22] can choose for σ a product measure such that the mixture Q satisfies the incompressibility condition, that is $\mathrm{Q}_{t}=$ vol or $\mathrm{Q}_{t}=\mathcal{N}(0,1 / 4)$, for all $t \in[0,1]$. For Ornstein-Uhlenbeck bridges, choosing σ as a product cannot yield an invariant process Q. This explains why we need to introduce correlations, and why we are this limited to Gaussian couplings for π.

Lemma 4.6. Consider the bridge mixture Q as defined in (4.2), with $\sigma:=\gamma_{\rho}$ for some $|\rho|<1$. Then, $\mathrm{Q}_{t}=\gamma$ for all $0 \leq t \leq T$ if and only if $\rho=\mathrm{e}^{-T}$.

Proof. If $\rho=e^{-T}$, then $\sigma=\mathrm{R}_{0 T}$ and $\mathrm{Q}=\mathrm{R}$. Let us show that it is the only possible ρ. Let $0 \leq t \leq T$. According to Lemma 4.4 and the definition of $\mathrm{Q}, \mathrm{Q}_{t}$ is the law of

$$
\frac{\sinh (T-t)}{\sinh (T)} X+\frac{\sinh (t)}{\sinh (T)} Z+\sqrt{\frac{\sinh (T-t) \sinh (t)}{\sinh (T)}} W
$$

where $(X, Z) \sim \gamma_{\rho}$ and W is an independent standard Gaussian random variable. In particular, we find for the variance

$$
\operatorname{Var}\left[Q_{t}\right]=\frac{\sinh ^{2}(T-t)}{\sinh ^{2}(T)}+2 \rho \frac{\sinh (T-t) \sinh (t)}{\sinh ^{2}(T)}+\frac{\sinh ^{2}(t)}{\sinh ^{2}(T)}+2 \frac{\sinh (T-t) \sinh (t)}{\sinh (T)}
$$

So, the variance is constant and equals 1 if and only if for all $0<t<T$, we have

$$
2 \rho \sinh (T-t) \sinh (t)=\sinh ^{2}(T)-\sinh ^{2}\left(T_{t}\right)-\sinh ^{2}(t)-2 \sinh (T) \sinh (T-t) \sinh (t)
$$

By direct computations, the right-hand side becomes

$$
2 \sinh (T-t) \sinh (t)(\cosh (T)-\sinh (T))
$$

Thus, the variance is constant and equals to 1 if and only if $\rho=\cosh (T)-\sinh (T)=\mathrm{e}^{-T}$.
Proof of Proposition 4.2. Actually, we need to concatenate several bridges in order to conclude. In this way, we obtain a free parameter for us to optimise. We let $r:=e^{-1 / 3}$, and $s \in \mathbb{R}$ to be chosen later. Let $\sigma \in \mathscr{P}\left(\mathbb{R}^{4}\right)$ be the centred Gaussian law with covariance

$$
C:=\left(\begin{array}{llll}
1 & r & s & c \\
r & 1 & r & s \\
s & r & 1 & r \\
c & s & r & 1
\end{array}\right)
$$

and $\mathrm{Q} \in \mathscr{P}(\Omega)$ defined by

$$
\mathrm{Q}:=\int_{\mathbb{R}^{3}} \mathrm{R}\left(\cdot \mid X_{0}=x, X_{1 / 3}=u, X_{2 / 3}=v, X_{1}=y\right) \sigma(\mathrm{d} x \mathrm{~d} u \mathrm{~d} v \mathrm{~d} y)
$$

The measure Q has finite relative entropy. By the chain rule for the entropy (2.4), we have

$$
\mathcal{H}(\mathrm{Q} \mid \mathrm{R})=\mathcal{H}\left(\pi \mid \mathrm{R}_{01}\right)+\int \mathcal{H}\left(\sigma^{x y} \mid \mathrm{R}_{1 / 3,2 / 3}^{x y}\right) \pi(\mathrm{d} x \mathrm{~d} y)
$$

Since, π and R_{01} on the one hand, and $\sigma^{x y}$ and $\mathrm{R}_{1 / 3,2 / 3}^{x y}$ on the other hand, are non-degenerated Gaussian laws, their relative entropies are finite. Furthermore, $\mathcal{H}\left(\sigma^{x y} \mid \mathrm{R}_{1 / 3,2 / 3}^{x y}\right)$ is a quadratic polynomial in x and y. Thus it is integrable with respect to the Gaussian measure π.

The measure Q satisfies the marginal conditions. By construction we have that $\mathrm{Q}_{01}=\pi$. Let $0<t<1$. Since R is a reciprocal measure, whenever $h \in\{0,1 / 3,2 / 3\}$

$$
\mathrm{Q}_{t}=\int \mathrm{R}_{t}\left(\cdot \mid X_{h}=x, X_{h+1 / 3}=y\right) \gamma_{r}(\mathrm{~d} x \mathrm{~d} y)
$$

Hence, using Lemma 4.6, we have $\mathrm{Q}_{t}=\gamma$.
Handling the parameters. To conclude, let us derive conditions on s and c, under which C is a covariance matrix, that is positive definite. Since C is a Toeplitz matrix, its eigenvalues are

$$
\begin{aligned}
& \frac{1}{2}\left(c+r+2 \pm \sqrt{c^{2}-2 c r+5 r^{2}+8 r s+4 s^{2}}\right) \\
& \frac{1}{2}\left(-c-r+2 \pm \sqrt{c^{2}-2 c r+5 r^{2}-8 r s+4 s^{2}}\right)
\end{aligned}
$$

Thus, C is a covariance matrix if and only if

$$
\frac{s^{2}+2 r s+r^{2}-r-1}{r+1}<c<\frac{s^{2}-2 r s+r^{2}+r-1}{r-1}
$$

These two inequalities have solutions if and only if $s \in\left(2 r^{2}-1,1\right)$. Then for each $r\left(4 r^{2}-3\right)<c<1$, there exists $s \in\left(2 r^{2}-1,1\right)$ such that Γ is the covariance matrix of a non-degenerated Gaussian measure. This proves the existence of a unique solution.

Remark 4.7. Our candidate measure Q is slightly more involved than the one from [ACLZ20], where the bridge is only conditioned at the time $1 / 2$. In our case, their approach would only prove the existence of solutions for $2 e^{-1}-1 \leq c<1$. Conditioning at times $1 / 3$ and $2 / 3$ gives more flexibility, thanks to the free parameter s.

REFERENCES

[ACLZ20] M. Arnaudon, A. B. Cruzeiro, C. Léonard \& J.-C. Zambrini. "An entropic interpolation problem for incompressible viscous fluids". Ann. Inst. Henri Poincaré, Probab. Stat. 56.3 (2020), pp. 2211-2235. DOI: 10.1214/19-AIHP1036.
[BK13] M. Barczy \& P. Kern. "Sample path deviations of the Wiener and the Ornstein-Uhlenbeck process from its bridges". Braz. J. Probab. Stat. 27.4 (2013), pp.437-466. DOI: 10.1214/11BJPS175.
[BM20] A. Baradat \& L. Monsaingeon. "Small noise limit and convexity for generalized incompressible flows, Schrödinger problems, and optimal transport". Arch. Ration. Mech. Anal. 235.2 (2020), pp. 1357-1403. DOI: $10.1007 / \mathrm{s} 00205-019-01446-$ w.
[Bre89] Y. Brenier. "The least action principle and the related concept of generalized flows for incompressible perfect fluids". J. Am. Math. Soc. 2.2 (1989), pp. 225-255. DOI: 10 . 2307/ 1990977.
[BSW13] B. Böttcher, R. Schilling \& J. Wang. Lévy matters III. Lévy-type processes: construction, approximation and sample path properties. Vol. 2099. Lect. Notes Math. Cham: Springer, 2013. DOI: 10.1007/978-3-319-02684-8.
[Cou67] P. Courrege. "Sur la forme intégro-différentielle du générateur infinitesimal d'un semigroupe de Feller sur une variété". In: Séminaire Brelot-Choquet-Deny. Théorie du potentiel Tome 10 (1965-1966). 1967, pp. 1-48. URL: http: / /www. numdam. org/item/SBCD_ 1965-1966__10_1_A3_0/.
[DZ10] A. Dembo \& O. Zeitouni. Large deviations techniques and applications. 2nd ed. Stoch. Model. Appl. Probab. Vol. 38. Springer, 2010. DOI: 10.1007/978-3-642-03311-7.
[GH22] D. García-Zelada \& B. Huguet. "Brenier-Schrödinger problem on compact manifolds with boundary". Stochastic Anal. Appl. 40.3 (2022), pp. 426-454. DOI: 10. 1080/07362994. 2021. 1922292.
[JS03] J. Jacod \& A. N. Shiryaev. Limit theorems for stochastic processes. 2nd ed. Grundlehren Math. Wiss. Vol. 288. Springer, 2003.
[Léo12] C. Léonard. "Girsanov theory under a finite entropy condition". In: Séminaire de probabilités XLIV. Springer, 2012, pp. 429-465. DOI: 10.1007/978-3-642-27461-9_20.

IRMAR, UnIVERSITÉ DE RENNES 1
Email address: ronan.herry@univ-rennes.fr
URL: https://orcid.org/0000-0001-6313-1372
IRMAR, UnIVERSITÉ DE RENNES 1
Email address: Baptiste.Huguet@math.cnrs.fr
URL: https://orcid.org/0000-0003-3211-3387

