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Abstract. Motivated by a problem from incompressible fluid mechanics of Brenier [Bre89], and its
recent entropic relaxation by [ACLZ20], we study a problem of entropic minimization on the path space
when the reference measure is a generic Feller semimartingale. We show that, under some regularity
condition, our problem connects naturally with a, possibly non-local, version of the Hamilton–Jacobi–
Bellman equation. Additionally, we study existence of minimizers when the reference measure in a
Ornstein–Uhlenbeck process.
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1. Introduction

1.1. Main result. We study the so-called Brenier–Schrödinger problem with respect to a reference
measure 𝖱, that is the law of a Feller martingale on [0, 1]. This problem consists in minimizing the
relative entropy of the law 𝖯 of another process 𝑌 under the marginal constraints:

(i) 𝑌𝑡 ∼ 𝜇𝑡, for all 𝑡 ∈ [0, 1], where (𝜇𝑡) is the data of a family of probability measure.
(ii) (𝑌0, 𝑌1) ∼ 𝜋, where 𝜋 is the data of a coupling of the endpoints.

By definition of the relative entropy, every minimizer is absolutely continuous with respect to 𝖱. It
particular, 𝖯 is also the law of a semimartingale, and the log-density process 𝑍 is a semimartingale.
Actually, conditionally on {𝑋0 = 𝑥}, 𝑍 is of the form

𝑍𝑡 = 𝐴𝑡− + 𝜓𝑥𝑡 (𝑋𝑡),
where 𝐴 is an additive functional, and (𝑡, 𝑧) ↦ 𝜓𝑥𝑡 (𝑧) is some function. We say that the minimizer 𝖯
is regular provided the associated 𝜓𝑥 is 𝒞1 in time, 𝒞2 in space, and the semimartingale 𝜓𝑥⋅ (𝑋) is
special (see definitions below). We recall that a semimartingale is special as soon as it has bounded
jumps. In particular, every continuous semimartingale is special. Our main result is as follows.

Theorem. Consider a regular solution 𝖯 of the aforementioned problem, and the associated 𝜓𝑥. Then,
the additive functional𝐴 is absolutely continuous. In particular, there exists a function𝑝∶ [0, 1]×ℝ𝑛 →
ℝ such that

(1.1) 𝐴𝑡 = ∫
𝑡

0
𝑝𝑡(𝑋𝑠)𝚍𝑠, 𝑡 ∈ [0, 1].

Moreover, 𝜓𝑥 is a solution to the generalized Hamilton–Jacobi–Bellman equation
(1.2) 𝜕𝑡𝜓𝑥 + e−𝜓𝑥𝑡 𝐀

(
e𝜓𝑥𝑡

)
+ 𝑝𝑠 = 0,

where 𝐀 denotes the Markov generator of 𝖱.

Remark 1.1. Let us make some comments on the result:
1
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(a) When 𝖱 is a Markov diffusion, then 𝐀𝑢(𝑥) = 1
2
𝑐(𝑥) ⋅ ∇2𝑢(𝑥) + 𝑏 ⋅ ∇𝑢(𝑥), for some diffusion

matrix 𝑐 and drift vector 𝑏. By the chain rule (1.2) becomes

𝜕𝑡𝜓𝑥𝑡 + 𝐀𝜓𝑥 + 1
2∇𝜓

𝑥
𝑡 ⋅ 𝑐∇𝜓𝑥𝑡 + 𝑝𝑡 = 0,

which is the usual Hamilton–Jacobi–Bellman equation with pressure.
(b) The function 𝑝 is interpreted as a pressure field.
(c) In the classical Hamilton–Jacobi–Bellman equation, the term 𝐀 would have a negative sign.

This phenomenon also has been observed in [ACLZ20]. It can be circumvent by considering the
potential 𝜓 associated to the time-reversed measure.
Verifying that there exist regular minimizers is an arduous task, that, in the Brownian case

amounts to solve the Navier–Stokes equation (see [ACLZ20] for details). We do not take on such
an accomplishment. More modestly, additionally to our main theorem, we show that there exists a
minimizer, possibly non-regular, when 𝖱 is the law of an Ornstein–Uhlenbeck process.

1.2. Motivations and connections to the literature. Understandingwhat happens to the Brenier–
Schrödinger problem for general semimartingales, possibly with a jump part is the main motivation
for this paper. The Brenier–Schrödinger problem, defined in [ACLZ20], is a relaxation of Brenier’s
approach [Bre89] to incompressible perfect fluids and Euler equations. This generalization, which
can be seen as the entropic relaxation of Brenier original problem, aims at modelling viscous fluid
dynamics. The achievements of [ACLZ20] are threefold.

(i) When the reference measure 𝖱 isMarkovian, they study the general shape of minimizers.
(ii) Whenever the reference measure 𝖱 is the law of a reversible Brownian motion on ℝ𝑛 or

(ℝ⧵ℤ)𝑛, they show thatminimizers of a certain form give rise to solution to theNavier–Stokes
equation.

(iii) On the torus, they show that minimizers always exists, whenever 𝜇𝑡 = 𝗏𝗈𝗅 for all 𝑡, and the
coupling 𝜋 has finite entropy relatively to the 𝖱01.

The two last points are extended to the compact manifold setting in [GH22]. Let us stress that the
particular form of the minimizer needed in [ACLZ20] is stronger than our regularity condition.
Indeed, they need to assume the existence of the function 𝑝 such that (1.1) holds, while (1.1) follows
from our analysis. Thus, even in the purely continuous case, our result is less restrictive than that of
[ACLZ20].
In the Brownian case, when the noise tends to 0, one recovers in the limit Brenier’s original problem

of minimization of the kinetic energy, as illustrated in [BM20]. In our possibly non-local setting,
understanding the appropriate notion of small noise limit, and whether there exists a equivalent of
Brenier’s problem is an interesting question that could be explored in future works.

1.3. Outline of the proof. Our proof follows the lines of [ACLZ20]. We use, on the one hand,
Itō’s formula, and on the other hand, Girsanov theorem to give two different representations of
the semimartingale 𝑍. At the technical level, since 𝑍 is a special semimartingale, it thus admits a
unique decomposition as a sum of a local martingale, and predictable process of finite variations.
This allows us to identify the two different decompositions and conclude. In the continuous case, as
for the Brownian setting of [ACLZ20], the semimartingale is always special and this assumption is
unnecessary.

2. Reminders and notation

2.1. Semimartingales and their characteristics. We refer to [JS03] for more details.

2.1.1. Path space. Let Ω denote the space of right-continuous with left-limit paths from [0, 1] to ℝ𝑛.
The canonical process on Ω is denoted by 𝑋, that is

𝑋𝑡(𝜔) ≔ 𝜔𝑡, 𝜔 ∈ Ω, 𝑡 ∈ [0, 1].
The associated canonical filtration defined by

𝔉𝑡 ≔
⋂

𝑠>𝑡
𝜎(𝑋𝑟 ∶ 0 ≤ 𝑟 ≤ 𝑠), 𝑡 ∈ [0, 1].
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Conveniently for 𝖯 ∈ 𝒫(Ω), we write 𝖯𝑡 for the law of 𝑋𝑡 under 𝖯, 𝖯𝑡𝑠 for the law of (𝑋𝑡, 𝑋𝑠) under 𝖯,
and so on.

2.1.2. Processes. An adapted process is a mapping 𝑌∶ Ω → Ω such that 𝑌𝑡 is𝔉𝑡-measurable for all
𝑡 ∈ [0, 1]. By definition, all our processes are right-continuous with left-limit. For such 𝑌, its jump
process is

∆𝑌𝑡 ≔ 𝑌𝑡 − 𝑌𝑡−, 𝑡 ∈ [0, 1].
We say that 𝑌 is predictable whenever seen as the mapping

[0, 1] × Ω ∋ (𝑡, 𝜔) ↦ 𝑌𝑡(𝑤),
it is measurable with respect to the 𝜎-algebra generated by 𝐹×(𝑡, 𝑠] for 𝑠 < 𝑡 and 𝐹 ∈ 𝔉𝑠. A process of
finite variation is an adapted process 𝐴 = 𝐵 − 𝐶 with 𝐵 and 𝐶 two non decreasing adapted processes.
In that case the variation of 𝐴 is the process 𝐵 + 𝐶. We also consider generalized adapted (resp.
predictable) processes of the form𝑊∶ Ω × ℝ𝑛 → Ω.

2.1.3. Martingales & semimartingales. Fix 𝖯 ∈ 𝒫(Ω). Amartingale (or a 𝖯-martingale to emphasize
the dependence on 𝖯) is an adapted process such that:

𝐄𝖯[𝑀𝑡 | 𝔉𝑠] = 𝑀𝑠, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.
We say that 𝑋 is a semimartingale under 𝖯 provided
(2.1) 𝑋 = 𝑋0 +𝑀 +𝐴,
where𝑀 is a 𝖯-martingale, and 𝐴 is a finite variation process (𝖯-almost surely). The decomposition
(2.1) is not unique.

2.1.4. Special semimartingales. If𝐴 can be chosen predictable in (2.1), we say that the semimartingale
is special. By [JS03, pp. I.4.23–24], a semimartingale is special if and only if, in (2.1), 𝐴 can be chosen
with 𝖯-integrable variation, and that a martingale is special as soon as its jump are bounded.

2.1.5. Canonical jumps measure. We consider the canonical jumps process and the canonical jumps
measure

∆𝑋𝑠 ≔ 𝑋𝑠 − 𝑋𝑠−, 𝑠 ∈ [0, 1];
𝜇𝑡 ≔

∑

𝑠≤𝑡
𝛿(𝑠,∆𝑋𝑠)𝟏∆𝑋𝑠≠0.

The measure 𝜇 is a random element ofℳ([0, 1] × ℝ𝑑), the set of Borel measures on [0, 1] × ℝ𝑑. For
a, possibly random, measure 𝜆 ∈ ℳ([0, 1] × ℝ𝑛), and a generalized process𝑊, we write

(𝑊 ∗ 𝜆)𝑡 ≔ ∫
𝑡

0
∫
ℝ𝑛
𝑊𝑠(𝑦)𝜆(𝚍𝑠𝚍𝑦), 𝑡 ∈ [0, 1].

2.1.6. Compensator of the jumps measure. For all 𝖯 ∈ 𝒫(Ω), there exists a unique predictable
measure 𝜈 such that

[𝐄𝖯[|𝑊| ∗ 𝜇] < ∞] ⇒ [𝐄𝖯[|𝑊| ∗ 𝜈] < ∞, and𝑊 ∗ 𝜇 −𝑊 ∗ 𝜈 is a 𝖯-martingale].
We call 𝜈 the compensator of 𝜇 (under 𝖯).

2.1.7. Characteristics of a semimartingale. We fix ℎ(𝑦) ≔ 𝑦𝟏|𝑦|≤1. The big-jumps removed version of
𝑋 is

𝑋ℎ ≔ 𝑋 − (𝑦 − ℎ) ∗ 𝜇.
If 𝑋 is a semimartingale under 𝖯, then 𝑋ℎ is a special semimartingale. Thus, there exists a unique
decomposition

𝑋ℎ = 𝑋0 +𝑀ℎ + 𝐵ℎ,
with𝑀ℎ a martingale, and 𝐵ℎ predictable. We call (𝐵ℎ, 𝐶, 𝜈) the characteristics of the semimartingale,
where 𝐶 is the quadratic variation of the continuous part of 𝑋, and 𝜈 the compensator.
Remark 2.1. In general, it is not known whether a semimartingale with prescribed characteristics
exists, nor if the characteristics characterise 𝖯.
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2.1.8. Representation of semimartingales with given characteristics. Let 𝖱 be a semimartingale with
characteristics (𝐵ℎ, 𝐶, 𝜈). Then, by [JS03, Thm. II.2.34], we have

𝑋 = 𝑋0 + 𝑋𝑐 + ℎ ∗ (𝜇𝑋 − 𝜈) + (𝑦 − ℎ) ∗ 𝜇𝑋 + 𝐵ℎ.

2.2. Markov processes and related concepts.

2.2.1. Shift semi-group. We consider the shift semi-group

𝑌𝑠◦𝜃𝑡 = 𝑌𝑡+𝑠, 𝑡, 𝑠 ∈ [0, 1].

2.2.2. Time reversal. We consider the canonical time-reversed process

𝑋∗
𝑡 ≔ 𝑋1−𝑡, 𝑡 ∈ [0, 1].

We write𝔉∗ for the associated filtration.

2.2.3. Markov process. A process 𝖯 ∈ 𝒫(Ω) isMarkov provided,
𝖯(𝑋𝑡+𝑠 ∈ 𝐵 | 𝔉𝑡) = 𝖯(𝑋𝑠 ∈ 𝐵 | 𝑋𝑡).

We shall use the following less common alternative characterization. The process 𝖯 ∈ is Markov if
and only if

𝖯(𝐶 ∩ 𝐶∗ | 𝑋𝑡) = 𝖯(𝐶 | 𝑋𝑡)𝖯(𝐶∗ | 𝑋𝑡), 𝑡 ∈ [0, 1], 𝐶 ∈ 𝔉𝑡, 𝐶∗ ∈ 𝔉∗
𝑡 .

2.2.4. Additive functionals. An adapted process 𝐴 is an additive functional provided 𝐴0 = 0 and
𝐴𝑡+𝑠 = 𝐴𝑠 + 𝐴𝑡◦𝜃𝑠.

We identify every additive functional with the random additive set function by letting for 𝑠 < 𝑡:
𝐴[𝑠,𝑡] ≔ 𝐴𝑡−𝑠◦𝜃𝑠,
𝐴[𝑠,𝑡) ≔ 𝐴(𝑡−𝑠)−◦𝜃𝑠,
𝐴(𝑠,𝑡] ≔ 𝐴(𝑡−𝑠)◦𝜃𝑠− ,
𝐴(𝑠,𝑡) ≔ 𝐴(𝑡−𝑠)−◦𝜃𝑠− .

2.2.5. Reciprocal measure. We say that 𝖯 is reciprocal provided
𝖯(𝑋𝑠 ∈ 𝐵 | 𝔉𝑟, 𝔉∗

𝑡 ) = 𝖯(𝑋𝑠 ∈ 𝐵 | 𝑋𝑟, 𝑋𝑡), 𝑟 ≤ 𝑠 ≤ 𝑡.
As for Markov processes, we repeatedly use the alternative characterization: 𝖯 is reciprocal if and
only if

0 ≤ 𝑠 ≤ 𝑡 ≤ 1, 𝐶 ∈ 𝔉𝑠, 𝐶∗ ∈ 𝔉∗
𝑡 , 𝐴 ∈ 𝜎(𝑋𝑢 ∶ 𝑠 ≤ 𝑢 ≤ 𝑡) ⇒

𝖯(𝐶 ∩ 𝐴 ∩ 𝐶∗ | 𝑋𝑠, 𝑋𝑡) = 𝖯(𝐶 ∩ 𝐴 | 𝑋𝑠, 𝑋𝑡)𝖯(𝐶∗ ∩ 𝐴 | 𝑋𝑠, 𝑋𝑡).
Clearly, all Markov processes are also reciprocal. We have that whenever 𝖯 is reciprocal, then 𝖯𝑥 is
Markov.

2.3. Feller processes and their generators. We follow [BSW13].

2.3.1. Feller semi-groups. A Feller semi-group is a Markov semi-group (𝐓𝑡) such that
‖𝐓𝑡𝑢 − 𝑢‖∞ ,,,,→

𝑡→0
0, 𝑢 ∈ 𝒞0(ℝ𝑑).

2.3.2. Infinitesimal generator. The infinitesimal generator of a Feller semi-group (𝐓𝑡) is the unique
unbounded operator 𝐀 with

𝒟(𝐀) ≔ {𝑢 ∈ 𝒞0(ℝ𝑑) ∶ lim
𝑡→0

𝐓𝑡𝑢 − 𝑢
𝑡 exists},

𝐀𝑢 ≔ lim
𝑡→0

𝐓𝑡𝑢 − 𝑢
𝑡 .

The generator 𝐀 is densely-defined and closed.
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2.3.3. Feller processes and martingales. Let 𝖯 ∈ 𝒫(Ω) be the law of a Feller process associated with
the Feller semi-group (𝐓𝑡), that is

𝐓𝑡𝑢(𝑥) = 𝐄𝖯[𝑢(𝑋𝑡) | 𝑋0 = 𝑥], 𝑥 ∈ ℝ𝑑, 𝑡 ∈ [0, 1].

Then, for all 𝑓 ∈ 𝒟(𝐀), the process

𝑀𝑡 ≔ 𝑓(𝑋𝑡) − 𝑓(𝑋0) − ∫
𝑡

0
𝐀𝑓(𝑋𝑠)𝚍𝑠, 𝑡 ∈ [0, 1],

is a 𝖯-martingale.

2.3.4. Lévy triplet of a Feller process. In the rest of the paper, we always assume that𝒟(𝐀) contains
the smooth functions 𝒞∞

𝑐 (ℝ𝑑). In this case, by [Cou67], there exist:
(i) 𝛼∶ ℝ𝑑 → ℝ+;
(ii) 𝑏ℎ ∶ ℝ𝑑 → ℝ𝑑;
(iii) 𝑐∶ ℝ𝑑 → ℝ𝑑×𝑑 symmetric non-negative;
(iv) 𝑁∶ ℝ𝑑 →ℳ(ℝ𝑑 ⧵ {0}) with ∫ℝ𝑑(|𝑦|2 ∧ 1)𝑁(𝑥, 𝚍𝑦) < ∞;

such that

𝐀𝑢(𝑥) = −𝛼(𝑥)𝑢(𝑥) + 𝑏ℎ(𝑥) ⋅ ∇𝑢(𝑥) + 1
2∇

2𝑢(𝑥) ⋅ 𝑐(𝑥)

+ ∫
ℝ𝑑⧵{0}

(𝑢(𝑥 + 𝑦) − 𝑢(𝑥) − ∇𝑢(𝑥) ⋅ ℎ(𝑦))𝑁(𝑥, 𝚍𝑦).
(2.2)

2.3.5. Feller processes and semimartingales. Let 𝖯 ∈ 𝒫(Ω) be the law of a Feller process with Lévy
triplet (𝑏ℎ, 𝑐, 𝑁). Then 𝖯 is a semimartingale with characteristics

𝐵ℎ𝑡 = ∫
𝑡

0
𝑏ℎ(𝑋𝑠)𝚍𝑠;

𝐶𝑡 = ∫
𝑡

0
𝑐(𝑋𝑠)𝚍𝑠;

𝜈(𝚍𝑠, 𝚍𝑦) = 𝑁(𝑋𝑠, 𝚍𝑦)𝚍𝑠.

(2.3)

2.4. Examples of Feller semi-groups.

2.4.1. Heat semi-group. Let 𝖱 be the law of the Wiener process onℝ𝑑. Consider the associated Feller
semi-group:

𝐓𝑡𝑢(𝑥) ≔ ∫
ℝ𝑑
e−|𝑦−𝑥|2∕2𝑡 𝚍𝑦

(2𝜋𝑡)𝑑∕2
.

Then 𝐀 = − 1
2
∆. The invariant measure is the Lebesgue measure.

2.4.2. Poisson semi-group. Let 𝖱 ∈ 𝒫(Ω) be the law of the Poisson process on ℝ𝑑 with intensity
𝜆 > 0 and jumping towards 𝑧 ∈ ℝ𝑑. The associated Feller semi-group is

𝐓𝑡𝑢(𝑥) ≔
∑

𝑘∈ℕ
𝑢(𝑥 + 𝑘𝑧)(𝜆𝑡)

𝑗

𝑗! e−𝑡𝜆.

Its generator is 𝐀𝑢(𝑥) = 𝜆(𝑢(𝑥 + 𝑧) − 𝑢(𝑥)). The invariant measure is the counting measure.
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2.4.3. Symmetric stable semi-groups. Let 𝖱 be the law of the 𝛼-stable symmetric, with 𝛼 ∈ (0, 2). The
associated Feller semi-group is

𝐓𝑡𝑢(𝑥) ≔ ∫ 𝑢(𝑥 + 𝑦)𝑝𝛼,𝑡(𝚍𝑦),

where 𝑝𝛼,𝑡 satisfies
𝑝𝛼,𝑡(𝜉) = e−𝑡|𝜉|𝛼 .

Then the generator is

𝐀𝑢(𝑥) ≔ 𝑘𝛼 ∫
ℝ𝑑⧵{0}

(𝑢(𝑥 + 𝑦) − 𝑢(𝑥) − ∇𝑢(𝑥) ⋅ ℎ(𝑦)) 𝚍𝑦
|𝑦|𝛼+𝑑

.

2.4.4. Lévy processes. Let 𝖱 be the law of a Lévy process on ℝ𝑑, that is

𝐓𝑡𝑢 ≔ 𝑢 ∗ 𝑝𝑡,

where (𝑝𝑡) is a family of infinitely divisible distributions. In this case the Lévy triplet is independent
of 𝑥, and the generator is

𝐀𝑢(𝑥) ≔ 𝑏ℎ ⋅ ∇𝑢(𝑥) + 1
2∇ ⋅ (𝑐∇𝑢(𝑥)) + ∫

ℝ𝑑⧵{0}
(𝑢(𝑥 + 𝑦) − 𝑢(𝑥) − ∇𝑢(𝑥) ⋅ ℎ(𝑦))𝑁(𝚍𝑦).

2.4.5. Ornstein–Uhlenbeck stable semi-groups. Let 𝖱 be the law of the 𝛼-stable symmetric process.
The associated Ornstein–Uhlenbeck process 𝑌 satisfies, under 𝖱

𝚍𝑌𝑡 = 𝚍𝑋𝑡 − 𝑌𝑡𝚍𝑡.

By solving explicitly this equation, the associated semi-group is

𝐓𝑡𝑢(𝑥) ≔ 𝐄𝖱[𝑢(e𝑡𝑥 + ∫
𝑡

0
e𝑠−𝑡𝚍𝑋𝑠) | 𝑋0 = 𝑥].

In this case
𝐀𝑢(𝑥) = −(−∆)𝛼∕2𝑢(𝑥) − 𝑥 ⋅ ∇𝑢(𝑥).

The unique invariant measure is 𝜇𝛼 such that

𝜇𝛼(𝜉) = e−
1
𝛼
|𝜉|𝛼 .

2.5. Relative entropy and Girsanov formula.

2.5.1. Relative entropy. We fix 𝖱 ∈ 𝒫(Ω) a semimartingale with characteristics (𝐵ℎ, 𝐶, 𝜈). The
relative entropy of with respect to 𝑅 is the functional

ℋ(𝖯 | 𝖱) ≔ {
𝐄𝖯
[ 𝚍𝖯
𝚍𝖱

]
, if 𝖯 ≪ 𝖱;

+∞, otherwise.

Elements of𝒫(Ω) that are absolutely continuous with respect to to a semimartingale are again a semi-
martingales [JS03]. In particular, elements with finite entropy with respect to 𝖱 are semimartingales.
[Léo12] characterises their characteristics.

2.5.2. Girsanov theorem under finite entropy. We consider the functions 𝜃∶ ℝ ∋ 𝑢 ↦ e𝑢 − 𝑢 − 1,
and its convex conjugate

𝜃⋆∶ ℝ ∋ 𝑣 ↦
⎧

⎨
⎩

(𝑣 + 1) log(𝑣 + 1) − 𝑣, if 𝑣 > −1;
1, if 𝑣 = −1;
+∞, otherwise.
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Theorem 2.2 ([Léo12, Thms. 1 & 3]). Then, for all 𝖯 ∈ 𝒫(Ω) such thatℋ(𝖯 | 𝖱) < ∞, there exist an
adapted process 𝛽, and predictable non-negative generalized process 𝓁 such that

𝐄𝖯 ∫
1

0
𝛽𝑠 ⋅ 𝐶(𝚍𝑠)𝛽𝑠 + 𝐄𝖯 ∫

1

0
∫
ℝ𝑑⧵{0}

𝜃⋆(|𝓁𝑠(𝑦) − 1|)𝜈(𝚍𝑠𝚍𝑦) < ∞.

Moreover, 𝖯 is a semimartingale with characteristics (𝐵ℎ + 𝐵̃, 𝐶, 𝓁𝜈), where

𝐵̃𝑡 ≔ ∫
𝑡

0
𝐶(𝚍𝑠)𝛽𝑠 + ∫

𝑡

0
∫
ℝ𝑑⧵{0}

ℎ(𝑦)(𝓁𝑠(𝑦) − 1)𝜈(𝚍𝑠𝚍𝑦).

Remark 2.3. [Léo12] states two different theorems, one continuous martingales, and another for
pure jump martingales. Decomposing the semimartingale 𝖯 in its continuous part and pure jump
part, it is clear that the results carry out to the mixed case.

2.5.3. Density under finite entropy. Additionally to the Girsanov theorem, [Léo12] obtains an expres-
sion of the density in terms of the processes 𝛽 and 𝓁. Consider the log-density process

𝑍𝑡 ≔ log𝐄𝖱[
𝚍𝖯
𝚍𝖱 | 𝔉𝑡].

Proposition 2.4 ([Léo12, Thms. 2 & 4]). On the event
{ 𝚍𝖯
𝚍𝖱
> 0

}
, we have 𝑍 = 𝑍𝑐 + 𝑍+ + 𝑍−, where,

under 𝖯

𝑍𝑐𝑡 ≔ ∫
𝑡

0
𝛽𝑠 ⋅ (𝚍𝑋𝑠 − 𝚍𝐵ℎ𝑠 − 𝐶(𝚍𝑠)𝛽𝑠) +

1
2 ∫

𝑡

0
𝛽𝑠 ⋅ 𝐶(𝚍𝑠)𝛽𝑠;

𝑍+𝑡 ≔ ∫
[0,𝑡]×ℝ𝑑

∗

𝟏{𝓁≥ 1
2

} log 𝓁 𝚍(𝜇𝑋 − 𝓁𝜈) + ∫
[0,𝑡]×ℝ𝑑

∗

𝟏{𝓁≥ 1
2

} 𝜃(𝓁 − 1) 𝚍𝜈

𝑍−𝑡 = ∫
[0,𝑡]×ℝ𝑑

∗

𝟏{0≤𝓁< 1
2

} log 𝓁 𝚍𝜇𝑋 + ∫
[0,𝑡]×ℝ𝑑

∗

𝟏{0≤𝓁< 1
2

} (−𝓁 + 1) 𝚍𝜈.

Remark 2.5. (a) As noticed in [Léo12], on the event
{𝑑𝑃
𝑑𝑅

> 0
}
, 𝓁 > 0 and the sum in the first

integral of the definition of 𝑍− is finite.
(b) The exact value 1∕2 for the cut-off between 𝑍+ and 𝑍− is artificial and could be chosen

anywhere in (0, 1).
(c) This expression of 𝑍 does not provide a decomposition as the sum of 𝑃-local martingale and

absolutely continuous process. Indeed, the stochastic integral (log 𝓁) ∗ (𝜇𝑋 − 𝓁𝜈) is meaningless, in
general. Additional assumptions could guarantee that it makes sense.

2.5.4. Disintegration with respect to the initial condition. So far 𝖯0 could be arbitrary, we consider the
regular disintegration of 𝖯 along its marginal 𝖯0. In this way, there exists a family (𝖯𝑥)𝑥∈ℝ𝑑 such that
𝖯𝑥 is supported on {𝑋0 = 𝑥} and

𝖯 = ∫ 𝖯𝑥𝖯0(𝚍𝑥).

The semimartingale property, the Markov property, the special semimartingale property, and the
Feller property are stable under this conditioning.

Remark 2.6. In particular, if 𝖱 is a Markov measure, then all the 𝖱𝑥 are also Markov. The data
(Ω,𝔉, (𝑋𝑡)𝑡∈[0,1], (𝖱𝑥)𝑥∈ℝ𝑑) is sometimes what is called a Markov process.

2.5.5. Chain rule for the entropy. By the chain rule for the entropy, [DZ10, Thm. D.13], it turns out
that

(2.4) ℋ(𝖯 | 𝖱) = ℋ(𝖯0 | 𝖱0) + ∫ ℋ(𝖯𝑥 | 𝖱𝑥)𝖯0(𝚍𝑥).

In particular, ifℋ(𝖯 | 𝖱) < ∞, and that 𝖱 is a semimartingale, then all the 𝖯𝑥 (𝑥 ∈ ℝ𝑑) are also
semimartingales.
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3. The Brenier–Schrödinger problem with respect to a Feller semimartingale

3.1. Formulation of the problem.

3.1.1. Setting. In the rest of the paper, we fix 𝖱 ∈ 𝒫(Ω) a Feller semimartingale with characteristics
as in (2.3). Let 𝜋 ∈ 𝒫(ℝ𝑛 × ℝ𝑛), that we interpret as a coupling between the initial and the final
position. Let (𝜇𝑡)𝑡∈[0,1] ∈ 𝒫(ℝ𝑛)[0,1], that we interpret as the incompressibility condition. We study
the Brenier–Schrödinger minimisation problem, with respect to the measure 𝑅

(LBS) inf {ℋ(𝖯 | 𝖱) ∶ 𝖯 ∈ 𝒫(Ω), ∀𝑡 ∈ [0, 1], 𝑃𝑡 = 𝜇𝑡, 𝑃01 = 𝜋}

3.1.2. General shape of the solutions. By [ACLZ20, Thm. 4.7], every minimizer 𝖯 in (LBS) is a recip-
rocal measure of the form

𝖯 = exp(𝜂(𝑋0, 𝑋1) + 𝐴1)𝖱,
for some Borel function 𝜂∶ ℝ𝑑 × ℝ𝑑 → ℝ and an additive functional 𝐴. Conditioning at {𝑋0 = 𝑥},
we find that

𝖯𝑥 = exp(𝜂(𝑥, 𝑋1) + 𝐴1)𝖱𝑥.
Using the additive property of 𝐴, we find that

𝐴1 = 𝐴[0,1] = 𝐴𝑡− + 𝐴[𝑡,1].

It follows that the log-density process looks like

𝑍𝑥𝑡 ≔ log𝐄𝖱𝑥[
𝚍𝖯𝑥
𝚍𝖱𝑥 | 𝔉𝑡] = 𝐴𝑡− + log𝐄𝖱𝑥

[
exp(𝑥, 𝑋1) + 𝐴[𝑡,1] | 𝑋𝑡

]
.

In view of this formula, let us define

(3.1) 𝜓𝑥(𝑡, 𝑧) ≔ log𝐄𝖱𝑥
[
exp

(
𝜂(𝑥, 𝑋1) + 𝐴[𝑡,1]

)
| 𝑋𝑡 = 𝑧

]
, 𝑡 ∈ [0, 1], 𝑧 ∈ ℝ𝑑.

With this definition, the above expression for 𝑍𝑥 reads

𝑍𝑥𝑡 = 𝐴𝑡− + 𝜓𝑥(𝑡, 𝑋𝑡).

3.2. Non-local Hamilton–Jacobi–Bellman equation. Let us reformulate the main result of the
paper with our introduced terminology and give the prove.

Theorem 3.1. Let 𝖯 ∈ 𝒫(Ω) be a regular solution to (LBS). Then, there exists a function 𝑝∶ [0, 1]×ℝ𝑑,
such that the potential 𝜓𝑥 defined in (3.1), is a strong solution to

𝜕𝑡𝜓𝑥𝑡 (𝑧) + e−𝜓𝑥𝑡 (𝑧)(𝐀e𝜓𝑥𝑡 )(𝑧) + 1
2∇𝜓

𝑥
𝑠 (𝑧) ⋅ 𝑐(𝑧)∇𝜓𝑥𝑠 (𝑧) + 𝑝𝑡(𝑧) = 0.

The proof follows from two different representations of 𝑍𝑥 as a special martingale.

3.2.1. Decomposition using Itō’s formula. For short, write

𝐽𝑥𝑠 (𝑦) ≔ 𝜓𝑥𝑠 (𝑋𝑠− + 𝑦) − 𝜓𝑥𝑠 (𝑋𝑠−).

Lemma 3.2. Under 𝖯𝑥, the process 𝜓𝑥⋅ (𝑋) is a special martingale. Moreover, we have

𝜓𝑥𝑡 (𝑋𝑡) = 𝜓𝑥𝑡 (𝑥) + ∫
𝑡

0
∇𝜓𝑥𝑠 (𝑋𝑠−) ⋅ 𝚍𝑋𝑐

𝑠 + 𝐽 ∗ (𝜇 − 𝓁𝑥𝜈) + ∫
𝑡

0
𝜕𝑠𝜓𝑥𝑠 (𝑋𝑠−)𝚍𝑠

+ ∫ ∇𝜓𝑥𝑠 (𝑋𝑠−) ⋅ 𝚍𝐵̄𝑠 +
1
2 ∫

𝑡

0
∇2𝜓𝑥𝑠 (𝑋𝑠−) ⋅ 𝚍𝐶𝑠 + ∫

𝑡

0
[𝐽𝑠(𝑦) − ∇𝜓𝑥𝑠 (𝑋𝑠−) ⋅ ℎ(𝑦)]𝜈(𝚍𝑠𝚍𝑦).

Proof. Since by assumption, 𝖱𝑥 is a Feller semimartingale with characteristics (𝐵ℎ, 𝐶, 𝜈), by (2.4)
and Theorem 2.2, we find that 𝖯𝑥 is a semimartingale. Moreover, there exist an adapted process 𝛽𝑥



BRENIER–SCHRÖDINGER WITH RESPECT TO FELLER SEMIMARTINGALES 9

and a predictable non-negative process 𝓁𝑥 with characteristics (𝐵ℎ + 𝐵̃𝑥, 𝐶, 𝓁𝑥𝜈). For short, let us
consider the local martingale𝑀, the drift 𝐵̄, and the generalized processes 𝐽 and𝑊 defined by

𝑀 ≔ 𝑋𝑐 + ℎ ∗ (𝜇 − 𝓁𝑥𝜈);
𝐵̄ ≔ 𝐵ℎ + 𝐵𝑥;
𝐽𝑠(𝑦) ≔ 𝜓𝑥𝑠 (𝑋𝑠− + 𝑦) − 𝜓𝑥𝑠 (𝑋𝑠−);
𝑊𝑠(𝑦) ≔ 𝐽𝑠(𝑦) − ∇𝜓𝑥𝑠 (𝑋𝑠−) ⋅ ℎ(𝑦).

Since, by assumption, 𝜓𝑥(𝑋) is a special semi-martingale, the same argument as in [JS03, Thm.
II.2.42] yields that𝑊 ∗ 𝜇 −𝑊 ∗ (𝓁𝑥𝜈) = 𝑊 ∗ (𝜇 − 𝓁𝑥𝜈) is a local martingale, and

𝜓𝑥𝑡 (𝑋𝑡) = 𝜓𝑥𝑡 (𝑥) + ∫
𝑡

0
𝜕𝑠𝜓𝑥𝑠 (𝑋𝑠−)𝚍𝑠 + ∫

𝑡

0
∇𝜓𝑥𝑠 (𝑋𝑠−) ⋅ 𝚍𝑀𝑠 + ∫ ∇𝜓𝑥𝑠 (𝑋𝑠−) ⋅ 𝚍𝐵̄𝑠

+ 1
2 ∫

𝑡

0
∇2𝜓𝑥𝑠 (𝑋𝑠−) ⋅ 𝚍𝐶𝑠 +𝑊 ∗ (𝜇 − 𝓁𝑥𝜈) +𝑊 ∗ (𝓁𝑥𝜈).

We conclude by observing that

∫
𝑡

0
∇𝜓𝑥𝑠 (𝑋𝑠−) ⋅ 𝚍(ℎ ∗ (𝜇 − 𝓁𝑥𝜈)) +𝑊 ∗ (𝜇 − 𝓁𝑥𝜈) = 𝐽 ∗ (𝜇 − 𝓁𝑥𝜈).

□

3.2.2. Decomposition using Girsanov’s theorem.

Lemma 3.3. The process (log 𝓁𝑥) ∗ (𝜇 − 𝓁𝑥𝜈) is a well-defined local martingale. Moreover, under 𝖯𝑥,

𝑍𝑥𝑡 = (log 𝓁𝑥) ∗ (𝜇 − 𝓁𝑥𝜈) + ∫
𝑡

0
𝛽𝑥𝑠 ⋅ 𝚍𝑋𝑐

𝑠

+ ∫
𝑡

0
∫ 𝜃⋆(𝓁𝑥𝑠 (𝑦) − 1)𝑁(𝑋𝑠, 𝚍𝑦)𝚍𝑠 +

1
2 ∫

𝑡

0
𝛽𝑥𝑠 ⋅ 𝑐(𝑋𝑠)𝛽𝑥𝑠 𝚍𝑠,

where the first line on the right-hand side is a local martingale, and the second line if a predictable
process.

Proof. The regular solution assumption ensures that the measure 𝖯𝑥 and 𝖱𝑥 are equivalent. The part
involving 𝛽𝑥 follows directly from Proposition 2.4. In view of Proposition 2.4, it is sufficient to show
that

𝑍+𝑡 + 𝑍−𝑡 = (log 𝓁𝑥) ∗ (𝜇 − 𝓁𝑥𝜈) + 𝜃⋆(𝓁𝑥 − 1) ∗ 𝜈.
Recall that

𝑍+𝑡 + 𝑍−𝑡 =∫
[0,𝑡]×ℝ𝑑

∗

𝟏𝓁𝑥≥ 1
2
log(𝓁𝑥) 𝚍(𝜇 − 𝓁𝑥𝜈) + ∫

[0,𝑡]×ℝ𝑑
∗

𝟏𝓁𝑥≥ 1
2
𝜃⋆(𝓁𝑥 − 1) 𝚍𝜈

+ ∫
[0,𝑡]×ℝ𝑑

∗

𝟏0≤𝓁< 1
2
log(𝓁𝑥) 𝚍𝜇 + ∫

[0,𝑡]×ℝ𝑑
∗

𝟏0≤𝓁𝑥< 1
2
(−𝓁𝑥 + 1) 𝚍𝜈.

(3.2)

Since 𝓁𝑥𝟏𝓁𝑥≥2 log(𝓁𝑥) and 𝓁𝑥 (𝟏1∕2≤𝓁<2 log(𝓁𝑥))2 are dominated by 𝜃∗(|𝓁−1|), which is 𝖯𝑥-integrable
by Theorem 2.2, thus, by [JS03, II.1.27, p. 72], 𝟏𝓁𝑥≥1∕2(log 𝓁𝑥) is a local martingale. The second and
the fourth terms have 𝖯𝑥-integrable variations because they are also dominated by 𝜃∗(|𝓁 − 1|) ∗ 𝜈.
Since 𝑍𝑥 is a special semimartingale, by [JS03, p. I.2.24], the third term also have 𝖯𝑥-integrable
variations. This implies that the stochastic integral 𝟏0≤𝓁<1∕2 log(𝓁) ∗ (𝜇𝑋 − 𝓁𝜈) is well-defined and a
local martingale. Moreover by [JS03, p. II.1.28], we have

𝟏0≤𝓁𝑥<1∕2 log(𝓁𝑥) ∗ (𝜇 − 𝓁𝑥𝜈) = 𝟏0≤𝓁𝑥<1∕2 log(𝓁𝑥) ∗ 𝜇 − 𝟏0≤𝓁𝑥<1∕2 log(𝓁𝑥) ∗ (𝓁𝑥𝜈).
The proof is thus complete by compensating the third term in (3.2), and by using that the map
𝑎 ↦ 𝑎 ∗ (𝜇 − 𝓁𝑥𝜈) is linear. □
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3.2.3. Conclusion.

Proof of Theorem 3.1. By the uniqueness of the decomposition of a special semimartingale, compar-
ing the expression for 𝑍𝑥 in Lemmas 3.2 and 3.3, we obtain by identification of the local martingale
parts
(3.3) log 𝓁𝑥𝑠 (𝑦) = 𝜓𝑥𝑠 (𝑋𝑠− + 𝑦) − 𝜓𝑥𝑠 (𝑋𝑠−), and 𝛽𝑥𝑠 = ∇𝜓𝑥⋅ (𝑋𝑠−).
By identification of the predictable part, we obtain

𝜃⋆(𝓁𝑥 − 1) ∗ 𝜈𝑠 +
1
2 ∫

𝑡

0
𝛽𝑥𝑠 ⋅ 𝐶(𝚍𝑠)𝛽𝑥𝑠 = 𝐴𝑠− + 𝜓𝑥0 (𝑥) + ∫

𝑡

0
𝜕𝑠𝜓𝑥𝑠 (𝑋𝑠−) 𝚍𝑠

+ 1
2 ∫

𝑡

0
∇2𝜓𝑥𝑠 (𝑋𝑠−) ⋅ 𝚍𝐶𝑠 + ∫

𝑡

0
∇𝜓𝑥𝑠 (𝑋𝑠−) ⋅ 𝚍𝐵ℎ𝑠 + ∫

𝑡

0
∇𝜓𝑥𝑠 (𝑋𝑠−)𝐶(𝚍𝑠)𝛽𝑥𝑠

+ ∫
[0,𝑡]′∗ℝ𝑑⧵{0}

∇𝜓𝑥𝑠 (𝑋𝑠−) ⋅ ℎ𝚍(𝓁𝑥 − 1)𝜈 + ∫
[0,𝑡]×ℝ𝑑

∗

[𝐽𝑠 − ∇𝜓𝑥𝑠 (𝑋𝑠−) ⋅ ℎ] 𝚍(𝓁𝑥𝜈).

Reporting (3.3) in the above, terms simplify and we arrive at

− ∫
[0,𝑡]×ℝ𝑑

∗

[
e𝐽𝑠 − 1 − ∇𝜓𝑥𝑠 (𝑋𝑠) ⋅ ℎ(𝑦)

]
𝚍𝜈 − 1

2 ∫
𝑡

0
∇2𝜓𝑥𝑠 (𝑋𝑠−) ⋅ 𝚍𝐶𝑠 −

1
2 ∫

𝑡

0
𝛽𝑥𝑠 ⋅ 𝐶(𝚍𝑠)𝛽𝑥𝑠

= 𝐴𝑡− + 𝜓𝑥0 (𝑥) + ∫
𝑡

0
𝜕𝑠𝜓𝑥𝑠 (𝑋𝑠−) 𝚍𝑠 + ∫

𝑡

0
∇𝜓𝑥𝑠 (𝑋𝑠−) ⋅ 𝚍𝐵ℎ𝑠

Recalling that the characteristics have the particular given in (2.3), we see, on the one hand, that 𝐴
is actually absolutely continuous. Since 𝐴 is an absolutely continuous additive functional there exist,
there exists a pressure 𝑝 ≔ [0, 1] × ℝ𝑑 such that

𝐴𝑡 = ∫
𝑡

0
𝑝𝑠(𝑋𝑠) 𝚍𝑠.

On the other hand, by differentiating with respect to 𝑡, we obtain

𝜕𝑠𝜓𝑥𝑠 (𝑋𝑠−) + 𝑝𝑠(𝑋𝑠) = −12∇
2𝜓𝑥𝑠 (𝑋𝑠−) ⋅ 𝑐(𝑋𝑠) −

1
2∇𝜓

𝑥
𝑠 (𝑋𝑠−) ⋅ 𝑐(𝑋𝑠)∇𝜓𝑥𝑠 (𝑋𝑠−)

− e−𝜓𝑥𝑡 (𝑋𝑡) ∫
ℝ𝑑
∗

[
e𝜓𝑥𝑡 (𝑋𝑡+𝑦) − e𝜓𝑥𝑡 (𝑋𝑡) − ∇e𝜓𝑥𝑡 (𝑋𝑡) ⋅ ℎ(𝑦)

]
𝑁(𝑋𝑠, 𝚍𝑦) + ∇𝜓𝑥𝑠 (𝑋𝑠−) ⋅ 𝑏ℎ(𝑋𝑠−).

This last equation is true 𝖯𝑥 almost surely. To conclude from there, we use a continuity argument
and the equivalence of 𝖯𝑥 and 𝖱𝑥. □

4. Existence of solutions for the Ornstein-Uhlenbeck problem

Since the functionalℋ(⋅ | 𝖱) is convex and lower semi-continuous on𝒫(Ω), by the direct method
of the calculus of variations, we obtain immediately the following result.

Lemma 4.1. Assume that there exist 𝖯 ∈ 𝒫(Ω), such that 𝖯01 = 𝜋, 𝖯𝑡 = 𝜇𝑡 for all 𝑡 ∈ [0, 1], andℋ(𝖯 |
𝖱) < ∞. Then, there exists a unique minimizer to (LBS).

Thus, in relation with Theorem 3.1, we have to answer two questions:
(A) Can we find a candidate 𝖯 ∈ 𝒫(Ω) for (LBS) with finite entropy?
(B) Is the unique solution to (LBS) regular?
[ACLZ20, Prop. 6.1] gives a positive answer to (A), when 𝖱 is the reversible Brownian motion on

the torus, 𝜇𝑡 = 𝗏𝗈𝗅 for all 𝑡 ∈ [0, 1] (incompressible case), and 𝜋 is any coupling satisfyingℋ(𝜋 |
𝖱01) < ∞. [GH22] studies the case of the reflected Brownian measure on some quotient spaces,
and of a non-reversible Brownian measure in ℝ𝑛. In the latter case, the incompressible condition
translates to Gaussian marginal constraints. All the results motioned above, the necessary and
sufficient condition for existence isℋ(𝜋|𝗏𝗈𝗅2) < +∞. In the Ornstein-Uhlenbeck case, we only
manage to prove existence when 𝜋 is a Gaussian of a certain form.
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In this section, we obtain a positive answer to (A) when 𝖱 is a reversible Brownian Ornstein–
Uhlenbeck process on ℝ. In the language of semimartingales , 𝖱 as characteristics (−𝑋𝑡,

√
2, 0), and

is started from a Gaussian distribution. In terms of stochastic differential equations, under 𝖱, the
canonical process 𝑋 satisfies

{ 𝚍𝑋𝑡 =
√
2𝚍𝑊𝑡 − 𝑋𝑡𝚍𝑡,

𝑋0 ∼ 𝛾 ≔ 𝒩(0, 1),
where𝑊 is an Brownian motion, under 𝖱, independent of 𝑋0. The measure 𝛾 is the unique invariant
measure of this process, thus we study (LBS) under the natural incompressible condition 𝜇𝑡 ≔ 𝛾 for
all 𝑡 ∈ [0, 1]. Hence, we consider the minimisation problem Namely, our minimisation problem in
this specific case only depends on the parameter 𝜋 ∈ 𝒫(ℝ𝑛 × ℝ𝕟), and reads
(4.1) inf {ℋ(𝖯 | 𝖱) ∶ 𝖯 ∈ 𝒫(Ω), 𝖯𝑡 = 𝛾 ∀𝑡 ∈ [0, 1], 𝖯01 = 𝜋}.
For |𝑐| ≤ 1, let us write

𝛾𝑐 ≔ 𝒩(0, (1 𝑐
𝑐 1))

Our results in this case is as follows.

Proposition 4.2. Let 𝜋 ≔ 𝛾𝑐 with 4𝑒−1 − 3𝑒−1∕3 ≤ 𝑐 < 1. Then, the problem (4.1) admits a unique
solution.

Remark 4.3. Since 𝖯0 = 𝖯1 = 𝛾, we necessarily have that the variance under 𝜋 is 1. Also if |𝑐| ≔ 1,
then 𝜋 is degenerated andℋ(𝜋|𝖱01) is not finite and so the problem would not have any solution.
Lastly, for the particular 𝑐 ≔ 𝑒−1, since 𝜋 = 𝖱01, the problem admits the trivial solution 𝑃 = 𝑅.

As in [ACLZ20; GH22], we create candidate path measures as mixture of 𝖱-bridges. In the setting
of the Ornstein-Uhlenbeck process, we exploit the following explicit representation for the bridge

𝖱𝑥𝑦 ≔ 𝖱(⋅ | 𝑋0 = 𝑥,𝑋𝑇 = 𝑦), 𝑥, 𝑦 ∈ ℝ, 𝑇 ∈ [0, 1].

Lemma 4.4 ([BK13]). The Ornstein–Uhlenbeck bridge 𝖱𝑥𝑦 coincides with the law of the process

𝑈𝑥,𝑦
𝑡 ≔ sinh(𝑇 − 𝑡)

sinh(𝑇)
𝑥 + sinh(𝑡)

sinh(𝑇)
𝑦 +

√
2 ∫

𝑡

0

sinh(𝑇 − 𝑡)
sinh(𝑇 − 𝑠)

𝚍𝑊𝑠,

where𝑊 is a standard Brownian motion. In particular,

𝖱𝑥𝑦𝑡 = 𝒩(sinh(𝑇 − 𝑡)
sinh(𝑇)

𝑥 + sinh(𝑡)
sinh(𝑇)

𝑦, 2sinh(𝑇 − 𝑡) sinh(𝑡)
sinh(𝑇)

).

Let 𝑇 > 0 and 𝜎 ∈ 𝒫(ℝ2). We define

(4.2) 𝖰 ≔ ∫
ℝ2
𝖱𝑥𝑦𝜎(𝚍𝑥𝚍𝑦).

The path measure 𝖰 is a mixture of Ornstein–Uhlenbeck bridges.

Remark 4.5. For Brownian bridges, [ACLZ20; GH22] can choose for 𝜎 a product measure such that
the mixture 𝖰 satisfies the incompressibility condition, that is 𝖰𝑡 = 𝗏𝗈𝗅 or 𝖰𝑡 = 𝒩(0, 1∕4), for all
𝑡 ∈ [0, 1]. For Ornstein-Uhlenbeck bridges, choosing 𝜎 as a product cannot yield an invariant process
𝖰. This explains why we need to introduce correlations, and why we are this limited to Gaussian
couplings for 𝜋.

Lemma 4.6. Consider the bridge mixture 𝖰 as defined in (4.2), with 𝜎 ≔ 𝛾𝜌 for some |𝜌| < 1. Then,
𝖰𝑡 = 𝛾 for all 0 ≤ 𝑡 ≤ 𝑇 if and only if 𝜌 = e−𝑇 .

Proof. If 𝜌 = 𝑒−𝑇, then 𝜎 = 𝖱0𝑇 and 𝖰 = 𝖱. Let us show that it is the only possible 𝜌. Let 0 ≤ 𝑡 ≤ 𝑇.
According to Lemma 4.4 and the definition of 𝖰, 𝖰𝑡 is the law of

sinh(𝑇 − 𝑡)
sinh(𝑇)

𝑋 + sinh(𝑡)
sinh(𝑇)

𝑍 +
√

sinh(𝑇 − 𝑡) sinh(𝑡)
sinh(𝑇)

𝑊,
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where (𝑋, 𝑍) ∼ 𝛾𝜌 and𝑊 is an independent standard Gaussian random variable. In particular, we
find for the variance

𝐕𝐚𝐫[𝑄𝑡] =
sinh2(𝑇 − 𝑡)
sinh2(𝑇)

+ 2𝜌sinh(𝑇 − 𝑡) sinh(𝑡)
sinh2(𝑇)

+ sinh2(𝑡)
sinh2(𝑇)

+ 2sinh(𝑇 − 𝑡) sinh(𝑡)
sinh(𝑇)

.

So, the variance is constant and equals 1 if and only if for all 0 < 𝑡 < 𝑇, we have

2𝜌 sinh(𝑇 − 𝑡) sinh(𝑡) = sinh2(𝑇) − sinh2(𝑇𝑡) − sinh2(𝑡) − 2 sinh(𝑇) sinh(𝑇 − 𝑡) sinh(𝑡).
By direct computations, the right-hand side becomes

2 sinh(𝑇 − 𝑡) sinh(𝑡)(cosh(𝑇) − sinh(𝑇)).
Thus, the variance is constant and equals to 1 if and only if 𝜌 = cosh(𝑇) − sinh(𝑇) = e−𝑇. □

Proof of Proposition 4.2. Actually, we need to concatenate several bridges in order to conclude. In
this way, we obtain a free parameter for us to optimise. We let 𝑟 ≔ 𝑒−1∕3, and 𝑠 ∈ ℝ to be chosen
later. Let 𝜎 ∈ 𝒫(ℝ4) be the centred Gaussian law with covariance

𝐶 ≔
⎛
⎜
⎜
⎝

1 𝑟 𝑠 𝑐
𝑟 1 𝑟 𝑠
𝑠 𝑟 1 𝑟
𝑐 𝑠 𝑟 1

⎞
⎟
⎟
⎠

,

and 𝖰 ∈ 𝒫(Ω) defined by

𝖰 ≔ ∫
ℝ3
𝖱(⋅ | 𝑋0 = 𝑥,𝑋1∕3 = 𝑢,𝑋2∕3 = 𝑣,𝑋1 = 𝑦)𝜎(𝚍𝑥𝚍𝑢𝚍𝑣𝚍𝑦).

The measure 𝑄 has finite relative entropy. By the chain rule for the entropy (2.4), we have

ℋ(𝖰 | 𝖱) = ℋ(𝜋 | 𝖱01) + ∫ ℋ(𝜎𝑥𝑦|𝖱𝑥𝑦1∕3,2∕3)𝜋(𝚍𝑥𝚍𝑦).

Since, 𝜋 and 𝖱01 on the one hand, and 𝜎𝑥𝑦 and 𝖱
𝑥𝑦
1∕3,2∕3 on the other hand, are non-degenerated

Gaussian laws, their relative entropies are finite. Furthermore, ℋ(𝜎𝑥𝑦 | 𝖱𝑥𝑦1∕3,2∕3) is a quadratic
polynomial in 𝑥 and 𝑦. Thus it is integrable with respect to the Gaussian measure 𝜋.

The measure𝖰 satisfies the marginal conditions. By construction we have that𝖰01 = 𝜋. Let 0 < 𝑡 < 1.
Since 𝖱 is a reciprocal measure, whenever ℎ ∈ {0, 1∕3, 2∕3}

𝖰𝑡 = ∫ 𝖱𝑡(⋅ | 𝑋ℎ = 𝑥,𝑋ℎ+1∕3 = 𝑦)𝛾𝑟(𝚍𝑥𝚍𝑦),

Hence, using Lemma 4.6, we have 𝖰𝑡 = 𝛾.

Handling the parameters. To conclude, let us derive conditions on 𝑠 and 𝑐, under which 𝐶 is a
covariance matrix, that is positive definite. Since 𝐶 is a Toeplitz matrix, its eigenvalues are

1
2(𝑐 + 𝑟 + 2 ±

√
𝑐2 − 2𝑐𝑟 + 5𝑟2 + 8𝑟𝑠 + 4𝑠2),

1
2(−𝑐 − 𝑟 + 2 ±

√
𝑐2 − 2𝑐𝑟 + 5𝑟2 − 8𝑟𝑠 + 4𝑠2).

Thus, 𝐶 is a covariance matrix if and only if

𝑠2 + 2𝑟𝑠 + 𝑟2 − 𝑟 − 1
𝑟 + 1 < 𝑐 < 𝑠2 − 2𝑟𝑠 + 𝑟2 + 𝑟 − 1

𝑟 − 1 .

These two inequalities have solutions if and only if 𝑠 ∈ (2𝑟2 − 1, 1). Then for each 𝑟(4𝑟2 − 3) < 𝑐 < 1,
there exists 𝑠 ∈ (2𝑟2 − 1, 1) such that Γ is the covariance matrix of a non-degenerated Gaussian
measure. This proves the existence of a unique solution. □
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Remark 4.7. Our candidate measure 𝑄 is slightly more involved than the one from [ACLZ20], where
the bridge is only conditioned at the time 1∕2. In our case, their approach would only prove the
existence of solutions for 2𝑒−1 − 1 ≤ 𝑐 < 1. Conditioning at times 1∕3 and 2∕3 gives more flexibility,
thanks to the free parameter 𝑠.
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