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We establish, in full generality, an unexpected phenomenon of strong
regularization along normal convergence on Wiener chaoses. Namely, for ev-
ery sequence of chaotic random variables, convergence in law to the Gaus-
sian distribution is automatically upgraded to superconvergence: the regu-
larity of the densities increases along the convergence, and all the deriva-
tives converge uniformly on the real line. Our findings strikingly strengthen
known results regarding modes of convergence for normal approximation on
Wiener chaoses. Without additional assumptions, quantitative convergence
in total variation is established by Nourdin and Peccati (Probab. Theory Re-
lated Fields 145 (2009) 75–118), and later on amplified to convergence in
relative entropy by Nourdin, Peccati and Swan (J. Funct. Anal. 266 (2014)
3170–3207).

Our result is then extended to the multivariate setting and for polynomial
mappings of a Gaussian field, provided the projection on the Wiener chaos
of maximal degree admits a nondegenerate Gaussian limit. While our find-
ings potentially apply to any context involving polynomial functionals of a
Gaussian field, we emphasize, in this work, applications regarding: improved
Carbery–Wright estimates near Gaussianity, normal convergence in entropy
and in Fisher information, superconvergence for the spectral moments of
Gaussian orthogonal ensembles, moments bounds for the inverse of strongly
correlated Wishart-type matrices, and superconvergence in the Breuer–Major
Theorem.

Our proofs leverage Malliavin’s historical idea to establish smoothness of
the density via the existence of negative moments of the Malliavin gradient,
and we further develop a new paradigm to study this problem. Namely, we
relate the existence of negative moments to some explicit spectral quantities
associated with the Malliavin Hessian. This link relies on an adequate choice
of the Malliavin gradient, which provides a novel decoupling procedure of
independent interest. Previous attempts to establish convergence beyond en-
tropy have imposed restrictive assumptions ensuring finiteness of negative
moments for the Malliavin derivatives Our analysis renders these assump-
tions superfluous.

The terminology superconvergence was introduced by Bercovici and
Voiculescu (Probab. Theory Related Fields 103 (1995) 215–222) for the cen-
tral limit theorem in free probability.
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1. Introduction.

1.1. Summary of the results. Controlling the regularity of a sequence of asymptotically
normal random variables is a prevalent question in probability theory. In the framework of
the usual central limit theorem, the smoothing effect of convolution entails the following
regularization phenomenon. Let (Xi) be a sequence of centred, normalized, and i.i.d. random
variables such that E[eitX1] ∼ t−θ as t → ∞ for some θ > 0; then for all q ∈ N, there exists
n large enough such that the law of n−1/2 ∑n

i=1 Xi has a density with respect to the Lebesgue
measure that is C q and converges in the C q -topology to the Gaussian density, C q being the
space of functions f : R → R with f,f ′, . . . , f (q) continuous and bounded, equipped with
the topology induced by the norm ‖f ‖C q := ‖f ‖∞ + · · · + ‖f (q)‖∞.

Extending normal convergence to nonlinear functionals of a random field, in particular
polynomial functionals of a Gaussian field, is a fertile and lively area of research. We refer to
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[36] and the references therein as well as to [32] for an overview. Despite numerous results
regarding normal approximation, capturing the above regularization phenomenon for Gaus-
sian polynomials has so far remained out of reach: the best known modes of convergence are
the total variation distance [35] or the relative entropy [39]. As opposed to the central limit
theorem, thoroughly covered by [28], due to the absence of convolution, questions regarding
regularity in this nonlinear framework are much more challenging.

In this article we develop a novel approach to study the regularity of nonlinear functionals
of a Gaussian field, based on Malliavin calculus and Wiener chaoses theory. In this setting
we show regularization of densities along normal convergence. This discovery drastically
strengthens the aforementioned results. Before stating our results, we recall that the Wiener
chaoses are the infinite-dimensional counterpart of the well-known Hermite polynomials. In
particular, they form an orthogonal basis with respect to the Wiener measure. We also recall
that nonconstant random variables in a finite sum of Wiener chaoses always admit a density
with respect to the Lebesgue measure [45]. We give more details on Wiener chaoses in Sec-
tion 3. We write dFM for the Fortet–Mourier distance; it metrizes the topology of convergence
in law. In the statement below, the Fortet–Mourier distance plays no specific role and could
be replaced by any distance metrizing the topology of convergence in law. We also write N

for the set of natural integers, and N
∗ := N \ {0}. Our main result reads as follows.

THEOREM 1. Let d ∈ N
∗ and q ∈ N, there exist δ = δq,d > 0 and C = Cq,d > 0 such

that for all F in the Wiener chaos of degree d , with density f , we have

dFM
(
F,N (0,1)

) ≤ δ ⇒ [
f ∈ C q and ‖f ‖C q ≤ C

]
.

Closely related to Theorem 1, is the following sequential theorem that gives the announced
regularization phenomenon along normal convergence on Wiener chaoses. Write ϕ for the
standard Gaussian density.

THEOREM 2. Let (Fn) be a sequence of random variables in a Wiener chaos of fixed
degree, with respective density (fn). Then

Fn
law−−−→

n→∞ N (0,1) ⇔ [∥∥f (q)
n − ϕ(q)

∥∥∞ −−−→
n→∞ 0,∀q ∈ N

]
.

In the above theorem, the quantity f
(q)
n is only defined for n large enough.

Our approach to regularity of laws on the Wiener space originates from Malliavin’s semi-
nal contribution [30]. In this paper, Malliavin shows that a random variable F on the Wiener
space has a smooth law, provided the norm of its Malliavin derivative �[F,F ] := ‖DF‖2

admits negative moments at every order. Our Theorems 1 and 2 proceed from Malliavin’s
strategy together with the following result, that is the pivotal tool of this paper.

THEOREM 3. Let (Fn)n≥1 be a sequence of random variables in a Wiener chaos of fixed
degree. Assume that (Fn) converges in law to N (0,1), then

lim sup
n→∞

E
[
�[Fn,Fn]−q] < ∞, q ∈N.

By standard Malliavin calculus techniques, which are recalled in Section 3.2.2, Theorem 1
and Theorem 2 follow from Theorem 3. Establishing Theorem 3 is the main contribution of
this paper. The proof of Theorem 3 is conducted in Section 6 and relies on the following key
ideas:

• Proposition 31 shows that Theorem 3, stated for scalar random variables, is actually equiv-
alent to its version for vector-valued random variables.
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• Thanks to a new representation of Malliavin derivatives, we relate, in Section 5.2, the
negative moments of �(F,F ) to spectral quantities associated to the Malliavin Hessian.

• For chaos of degree 2, the Malliavin Hessian is deterministic and the control of these
spectral quantities is straightforward (see Section 4.2).

• For chaos of degree ≥ 2, we proceed by induction. We first compare the Malliavin Hessian
with the compressed Malliavin Hessian which is obtained by multiplying it by a large
independent Gaussian matrix of small rank, which enables us to reduce the dimension (see
Section 6.4). Then Section 6.5 we interpret the compressed Hessian as a vector of random
variables in a chaos of degree d − 1 allowing to conclude by the induction hypothesis.

We give a more detailed summary of our approach in Section 1.4.

1.2. Compendium of related results.

1.2.1. Central limit on the Wiener space and the Fourth Moment Theorem. The break-
through by Nualart and Peccati [43] provides an efficient and tractable criterion to establish
normal convergence on Wiener chaoses. Their Fourth Moment Theorem states that a sequence
in a Wiener chaos of fixed degree converges in law to a Gaussian if and only if the sequences
of its second and fourth moments converge to the respective moments of the target Gaussian
distribution. This result has stemmed a new line of research establishing simple, yet powerful,
conditions for normal convergence on the Wiener space. Among the most notable develop-
ments regarding limit theorems on Wiener chaoses, let us mention the following nonexhaus-
tive contributions:

[44] Peccati and Tudor extend the fourth moment theorem to random vectors whose each
coordinate lives in a Wiener chaos, possibly of different degrees.

[42] Ortiz-Latorre and Nualart establish that a sequence of random variables (Fn) in a
fixed Wiener chaos converge in law to a Gaussian if and only if �[Fn,Fn] converge to a
constant in L2.

[35] Nourdin and Peccati combine Stein’s method and Malliavin calculus in order to ob-
tain a quantitative fourth moment theorem. Namely, for a chaotic random variable F with
E[F 2] = 1, we have

dTV
(
F,N (0,1)

) ≤ c Var
[
�[F,F ]]1/2 ≤ c E

[
F 4 − 3

]1/2
.

This landmark contribution emphasizes the symbiotic interplay between Stein’s method and
Malliavin calculus: on the Wiener space, Stein kernels, that quantify convergence in distribu-
tion, are explicitly computable through integration by parts for the Malliavin operators; see
[32] for a regularly updated list of contributions in this area.

[3, 26] Ledoux, and Azmoodeh, Campese and Poly leverage the rich spectral properties
of Wiener chaoses to revisit the fourth moment theorem. This approach avoids the intricate
product formula for Wiener chaoses and insists instead on moment inequalities for chaotic
random variables. For further developments of this strategy, see [4, 29]

[33] Nourdin, Peccati and Swan improve further the Malliavin–Stein approach by estab-
lishing a fourth moment bound for the relative entropy with respect to the Gaussian measure.
In view of Pinsker’s inequality, this improves the convergence in total variation of [35], al-
though the rate of convergence in [33] are nonsharp by an additional logarithmic factor.

All the results presented above hold for a general sequence of chaotic random variables, that
is, they hold without any further assumption on the sequence. For such general sequences,
until the present contribution, no results beyond convergence in entropy were available.
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1.2.2. Controlling the regularity via the negative moments of the Malliavin gradient.
Originally, Malliavin [30] uses controls on negative moments of the Malliavin derivative to
give a new, purely probabilistic, proof of Hörmander theorem on hypoelliptic operators [19];
see also the recent selfcontained survey [16]. Since then, establishing that �[F,F ]−p ∈ L1

has become a practical criterion in the study of the regularity of the density of F . For in-
stance, in various contexts the recent works [2, 12, 23, 33] implement this strategy. In this
paper as well as in the companion paper [17], we propose a new general estimate on the
negative moments of �[F,F ], involving the spectrum of the Hessian matrix of F . We then
bring the aforementioned fine results regarding normal convergence on Wiener chaoses, aris-
ing from the Malliavin–Stein method, to bear on establishing existence of negative moments
for asymptotically normal chaotic sequences.

Previous works on the Wiener space have implemented the strategy of controlling negative
moments of the Malliavin derivative to improve normal convergence. These various attempts
fail to capture the generality of the phenomenon we exhibit in this work and are constrained
by unnecessary assumptions in order to carry their analysis. Let us mention the most promi-
nent developments in that regard. In the three following examples, the present contribution
renders the additional assumptions on the negative moments of the Malliavin derivative un-
necessary.

[22] Assuming negative moments for the Malliavin derivative, Hu, Lu and Nualart give a
C ∞ version of the celebrated bound of [35]. Namely, take a sequence (Fn) of chaotic random
variables with variance 1 and such that

lim sup
n→∞

E
[
�[Fn,Fn]−p] < ∞, p ∈ N,

they show the following Malliavin–Stein bound for superconvergence∥∥f (q)
n − ϕ(q)

∥∥∞ ≤ cq E
[
F 4

n − 3
]1/2

, q ∈N.

[33] In the same spirit, under the assumptions of negative moments, Nourdin and Nualart
establish a fourth moment theorem in relative Fisher information. The authors are, moreover,
able to apply their criterion to general sequences of random variables living in the second
Wiener chaos. In this case an explicit diagonalization argument allows to conclude on the
existence of negative moments. We also refer to [27], Proposition 5.5, for related bounds on
the negative moments of the Malliavin derivatives in connection with the Fisher information.

[23] Hu, Nualart, Tindel and Xu establish superconvergence to the normal distribution of
properly rescaled Hermite sums of a stationary Gaussian field, under the assumption that the
spectral measure admits a density whose logarithm is integrable, together with mild additional
assumptions on the spectral measure.

1.2.3. Regularity for general polynomials in Gaussian variables. Our techniques
strongly profit from the asymptotic normality of the sequence under consideration. The ques-
tion of the regularity of the law for a generic element of a Wiener chaos, possibly away from
normality, has attracted several important contributions. For instance, [8] establishes that the
law of a nonconstant polynomials in independent Gaussian variables always belong to a frac-
tional Nilkolskii–Besov space. Moreover, they show that this regularity is the best possible at
this level of generality; see also the survey [7] and the references therein.

1.2.4. Superconvergence in free probability. In [5] Bercovici and Voiculescu discover a
remarkable regularization in the free central limit theorem: indeed, for any free and identi-
cally distributed random variables (Xn) the law of n−1/2 ∑n

i=1 Xi is eventually smooth, and
the sequence of respective densities converges to the semicircular density, in the sense of uni-
form convergence on compact sets of all the derivatives. They call this better-than-expected
convergence “superconvergence,” and we borrow the terminology from their work.
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1.3. Detailed review of the results. As anticipated, we establish a regularization phe-
nomenon along normal convergence on Wiener chaoses. Our techniques exploit the rich
structure of Wiener chaoses and yield existence of negative moments for ‖DFn‖, as soon
as (Fn) converges in law to a nondegenerate Gaussian. This phenomenon has gone unnoticed
until now. It allows, in particular, an important enhancement of the normal convergence on
Wiener chaoses: from total variation [35] or relative entropy [39] to superconvergence, that
is, uniform convergence of the densities as well as all their derivatives. From [35, 42] normal
convergence of (Fn) guarantees that (‖DFn‖) converges to a constant in Lp (p ≥ 1). Here we
refine this information on the behaviour of the Malliavin derivatives and provide analogous
results for negative p. This enables Malliavin calculus techniques to establish regularization.
We actually obtain a version of our result for sequences of vectors whose coordinates are in
Wiener chaoses, possibly of different degrees, and some variations of the result which hold
for finite sums of Wiener chaoses. We discuss below various applications.

1.3.1. Regularization on Wiener chaoses. In what follows, we denote by Wm the mth
Wiener chaos associated to a fixed Gaussian field and � the associated square field operator,
that is, �[F,F ] := ‖DF‖2 where D is the Malliavin derivative. Whenever, �F = (F1, . . . ,Fd)

is vector-valued, we consider the Malliavin matrix

�( �F) := (
�[Fi,Fj ])ij .

Following Malliavin’s idea, our regularization results are obtained through the existence of
negative moments for the Malliavin matrix. The general version of our theorem for random
vectors is as follows.

THEOREM 4. Let d and m1, . . . ,md ∈ N
∗. Consider a sequence ( �Fn) ⊂ ∏

i Wmi
such

that

�Fn
Law−−−→

n→∞ N (0, Id).

Then for every q ≥ 1, there exist N ∈N and c > 0 such that

(1) E
[
det�( �Fn)

−q] ≤ c, n ≥ N.

REMARK 5. Equivalently, the sequence (�( �Fn)
−1)n≥1 is asymptotically bounded in Lq ,

in the sense that, for any matrix norm ‖·‖,

lim sup
n→∞

E
[∥∥�( �Fn)

−1∥∥q]
< ∞.

REMARK 6. We can consider more general limiting laws N (0,C) with C an invertible
d × d matrix. Without loss of generality, assume that (mi) is not decreasing. Let k ≤ n and
i1, . . . , ik be the indices such that mil �= mil+l . Then since elements of a Wiener chaos of dif-
ferent degrees are uncorrelated [36], Proposition 2.7.5, we find that Cn, the covariance matrix
of �Fn, is diagonal by blocks and contains exactly k blocks. Write Cn[1], . . . ,Cn[k] for those
blocks. The block Cn[l] is a square matrix of size nl × nl , where nl is the numbers of indices
i such that mi = mil . Since C is invertible, for n large enough Cn is also invertible. Inverting
the matrix by block and using that Wiener chaos are stable by nonzero linear combinations,
we obtain that C

−1/2
n

�Fn satisfies the assumptions on the theorem.

REMARK 7. It is possible to consider a slight generalization of our result, where we
consider degrees m

(n)
i that depend on n but are uniformly bounded. In this case the sequence
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(m
(n)
i ) assume only finitely many distinct values. Thus, we can extract finitely many sub-

sequences that satisfy the assumptions of the theorem. It would be interesting, and more
difficult, to consider varying degrees m

(n)
i with m

(n)
i → ∞, possibly with some prescribed

speed of divergence. We do not how to tackle this problem; it would require the demanding
and involved task of tracking quantitatively the dependence in the degrees of the chaos in all
our estimates.

As anticipated, an important consequence of Theorem 4 is a superconvergence phe-
nomenon on Wiener chaoses: by integration by parts, negative moments for det�( �F) yield
regularity estimates on the density. We measure the regularity in the Sobolev space Wq,p(Rd)

with p ∈ [1,∞], and q ∈ N. This is the space of (class of equivalence of) functions
f : Rd →R that are in Lp such that

∂αf := ∂qf

∂x
α1
1 . . . ∂x

αd

d

∈ Lp, α = (α1, . . . , αd) ∈ N
d, |α| := α1 + · · · + αd = q.

Here the partial derivatives are taken in the sense of distributions. We often omit the depen-
dence on R

d in our notation. We equip Wp,q with the Sobolev norm

‖f ‖Wq,p := ∑
|α|≤q

∥∥∂αf
∥∥
Lp .

For q = 0, our definition is understood as W 0,p = Lp . Accordingly, we extend our definition
of C q as the set of functions f : Rd → R with all the partial derivatives ∂αf for |α| ≤ q

continuous and bounded. It is equipped with the norm

‖f ‖C q := ∑
|α|≤q

∥∥∂α
∥∥∞.

We recall that, by the Sobolev embeddings [20], Section 4.5,

‖·‖Wq,1 ≤ ‖·‖Wq,p ≤ c‖·‖
Wq′,1, p ∈ [1,∞], q ∈N, q ′ := d + q − d

p
≥ q.(2)

‖·‖C q ≤ c‖·‖
Wq′,1, q ∈ N, q ′ := q + d.(3)

Thus, it is sufficient to control the norms ‖·‖Wq,1 for q ∈ N, in order to control all the norms
‖·‖Wq,p for q ∈N and p ∈ [1,∞], and all the norms ‖·‖C q for q ∈N. To achieve this control,
it is convenient to work in Fourier modes. We define

‖f ‖Nq := sup
‖�t‖≥1

‖�t‖q
∣∣f̂ (�t)∣∣, q ∈ N.

By the Hausdorff–Young inequality [20], Theorem 7.1.13, the Fourier isomorphism theorem
[20], Theorem 7.1.11, the continuity of the Fourier transform on Lp-spaces [20], Theorem
7.9.3, and (2), we have

(4) ‖·‖Wq,1 ≤ c‖·‖Nq+1 ≤ c′‖·‖Wq+1,1 .

THEOREM 8. Let ( �Fn) be as in Theorem 4. Then, denoting by fn the density of �Fn and
by ϕ the density of the standard Gaussian distribution on R

d , for every p ∈ [1,∞] and q ≥ 0,
we have that, for n large enough, fn ∈ Wq,p(Rd) and

(5) fn

Wq,p
(
R

d
)

−−−−−−→
n→∞ ϕ.

Let us state some immediate consequences and remarks:
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(a) In particular, we obtain that fn → ϕ in Lp(Rd) for every p ∈ [1,∞]. This convergence
is already new, except for p = 1, which is simply total variation. By (3) we also deduce that,
for n large enough, fn ∈ C q(Rd) and ‖fn → ϕ‖C q .

(b) By (4) Theorem 8 also gives estimates on characteristic functions of vectors in Wiener
chaoses close, in law, to a Gaussian vector, which may be advantageous in some circum-
stances: for every m ∈ N

∗ and q ∈ N, there exist δ = δq,m > 0 and C = Cq,m > 0 such that,
for every �F ∈ Wm, we have

(6) dFM
( �F,N (0, Id)

) ≤ δ ⇒ sup
‖�t‖≥1

‖�t‖q
∣∣E[

ei�t · �F ]∣∣ ≤ C.

(c) We could, in fact, be more precise and estimate the rate of convergence. For example,
Theorem 4, together with [22], Theorem 4.4, yields for univariate random variables that, for
every p ∈ N, there exist Cp and αp > 0 such that, for every F ∈Wm with density f ,

(7) E
[
F 4] − 3 < αp ⇒

[
f ∈ C p and sup

x∈R
‖f − ϕ‖C p ≤ Cp E

[
F 4 − 3

]1/2
]
.

This estimate could be generalized to random vectors. It would be interesting and useful to
derive an explicit expression for the quantities αp and Cp . This rather demanding task falls
beyond the scope of this article and could be explored in further contributions.

Let us now show how modulo, a well-known result in Malliavin calculus, recalled in Sec-
tion 3.2.2, Theorem 4 implies Theorem 8. Similarly, Theorem 3 implies Theorems 1 and 2.

PROOF OF THEOREMS 1, 2 AND 8. By (2), (3) and (4), it is sufficient to show that

‖fn − ϕ‖Nq → 0, q ∈N.

The conclusion of Theorem 4, that is, (1), implies that

(8) lim sup
n→∞

‖fn‖Wq,p < ∞, p ∈ [1,∞], q ∈ N.

For details on this fairly standard result, see Lemma 23 below. By (4), (8) yields

(9) lim sup
n→∞

‖fn‖Nq < ∞, q ∈ N.

Fix ε > 0, and let A = ε−1. By the convergence in law, we find that

sup
1≤‖�t‖≤A

‖�t‖∥∥f̂n(t) − ϕ̂(t)
∥∥ → 0.

On the other hand, we have

sup
‖�t‖≥A

‖�t‖q
∥∥f̂n(t) − f̂ (t)

∥∥ ≤ εq‖fn − ϕ‖N2q .

Since by (9) and smoothness of ϕ,

c := lim sup
n→∞

‖fn − ϕ‖N2q < ∞,

we find that

lim sup
n→∞

sup
‖�t‖≥A

‖�t‖q
∥∥f̂n(t) − f̂ (t)

∥∥ ≤ cεq.

This concludes the proof. �
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1.3.2. Regularization on sum of chaoses. The results partially extend to random variables
in a finite sum of Wiener chaoses. We let W≤m := ⊕m

k=0 Wk . We also denote by Jk the
projection on the kth Wiener chaos.

Theorem 1 does not hold on W≤m. Indeed, if Fn = (n + 1)−1G2 + G where G belongs to
the first chaos of the underlying Gaussian field, then (Fn)n∈N is a sequence in W≤2 converg-
ing in law to the standard Gaussian. Nonetheless, �[Fn,Fn] = (2(n+1)−1G+1)2. It follows
that �[Fn,Fn]−1 is never integrable. Additionally, by direct computations the density of Fn is
never continuous. Nevertheless, we obtain regularization results for sequences in W≤m under
some assumptions on the projection over the largest Wiener chaos Wm.

THEOREM 9. Fix m ∈ N
∗ and a sequence (Fn) ⊂ W≤m. We assume that:

(i) Jm(Fn) → N (0,1) in law.
(ii) (Fn)n≥1 is bounded in L2.

Then for every q ≥ 1, there exist an integer N and a constant C such that

E
[
�[Fn,Fn]−q] ≤ C, n ≥ N.

Let us make some comments on this theorem:

• The main assumption concerns only the projection of Fn on Wm. The projection on the
other Wiener chaoses only need to be bounded.

• The conclusion implies that the density of Fn regularizes as n tends to +∞. At this level of
generality, (Fn)n does not converge in law. It is not possible to talk about smooth conver-
gence of the densities. Nevertheless, by the same argument as in the proof of Theorem 8,
our result implies that all the limits in law of a subsequence of (Fn) have a smooth density
and that the subsequence of the densities converges smoothly.

Concerning smooth normal convergence, we state the following corollary. We write D2F

for the Malliavin Hessian of F , and for an Hilbert–Schmidt operator A, we write ρ(A) for its
spectral radius.

COROLLARY 10. Consider a sequence (Fn) ⊂ W≤m and the sequence of associated
densities (fn). Assume any of the three following situations hold:

(a) Fn − JmFn → 0 in L2 and (Fn) converge in law to a standard Gaussian.
(b) For every k = 0, . . . ,m, (JkFn) converges in law to a Gaussian measure, possibly

degenerate, except for k = m.
(c) (Fn) is bounded in L2, ρ(D2Fn) → 0 in L2, and lim inf Var[JmFn] > 0.

Then we have superconvergence to a Gaussian density,

fn
Wq,p(R)−−−−−→
n→∞ ϕ, q ≥ 0,p ∈ [1,∞].

PROOF. The proofs are immediate but for (c). Since for l ∈ {1, . . . ,m},
m∏

i=1,i �=l

(
L−1 + 1

i

)
=

[
m∏

i=1,i �=l

(
1

k
− 1

l

)]
Jl ,

by Meyer’s inequalities (see, for instance [37], equation (3.18)), we find that ρ(D2JlFn) → 0
in L2 and thus also in L4 by equivalence of Lp norms on Wiener chaos (see Section 3.1.3
below). Since Fn ∈ W≤m, �(Fn,Fn) ∈ W≤m′ for m′ = 2(m − 1) (see [36], Proposition 2.7.4
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and Theorem 2.7.10). By equivalence of Lp norms on Wiener chaos and by [41], Proposition
1.2.2, we find that

E
[‖DFn‖4]1/4 = E

[
�(Fn,Fn)

2]1/4 ≤ c E
[
�(Fn,Fn)

]1/2 ≤ c′ E
[
F 2

n

]1/2
.

Thus, we are in the setting of the second order Poincaré inequality [13, 37], and each of
the (JkFn) converges in law to Gaussian, possibly degenerate but for k = m in view of our
assumption. We conclude by (b). �

Actually, from the proof of Theorem 4, one could obtain a vector-valued version of our
theorem for sum of chaoses.

THEOREM 11. Let d ∈ N
∗ and m1, . . . ,md ∈ N

∗. Consider a sequence ( �Fn) ⊂∏
i W≤mi

. Assume that:

(i) (Jm1Fn,1, . . . , Jmd
Fn,d) → N (0, Id) in law.

(ii) ( �Fn)n≥1 is bounded in L2.

Then for every q ≥ 1, there exist N ∈N and C > 0 such that

E
[
det�( �Fn)

−q] ≤ C, n ≥ N.

1.4. Scheme of the proof of the main results. Following Malliavin’s idea, Lemma 23, the
core of the proof is to establish control of negative moments of �[Fn,Fn] = ‖DFn‖2 for a
sequence (Fn) ⊂ Wm asymptotically normal, that is, Theorem 3. Actually, it is sufficient to
prove the claim for functionals, depending on finitely many independent Gaussian variables
(N1, . . . ,NK) with K arbitrarily large and all the estimates being independent of K , as ex-
plained in Section 3.1.4. In this setting we prove Theorem 3 by induction on m. The main
steps of the proof are as follows.

Extending the statement to vectors. Through a discretization procedure, we show, in Corol-
lary 32, that the induction hypothesis, that is, Theorem 3 for m − 1, implies its vectorial
version, that is, Theorem 4, restricted to ( �Fn) ⊂ Wd

m−1.

Negative moments for the derivative and spectral remainders of the Hessian. Our key ob-
servation relates the negative moments of �[Fn,Fn] to spectral quantities associated to the
Malliavin Hessian D2Fn. Namely, for all q ∈ N

∗, we introduce the spectral quantities

Rq

(
D2Fn

) := ∑
i1 �=···�=iq

λ2
i1

. . . λ2
iq

,

where (λi) is the spectrum of the random matrix D2Fn. Then in Proposition 30 we show that

E
[
�[Fn,Fn]−q] ≤ c E

[
Rq ′

(
D2Fn

)−1/2]
,

where q ′ depends only on q . Whenever m = 2, that is, on the second Wiener chaos, D2Fn

is a deterministic matrix, and the above inequality follows from a diagonalization argument
together with an explicit computation of the Fourier transform of a chi-squared distribution.
This step is completed in Proposition 27. For the case of higher degree, we use a new decou-
pling idea based on taking Malliavin derivatives in the direction of Gaussian random variables
independent of the underlying field.

Compressing the Hessian. Actually, we do not directly derive estimates on Rq(D2Fn) but
rather control a compressed matrix. To do so, we generalize, using singular values, the notion
of spectral remainders to rectangular matrices (see (19)). Then we show in Lemmas 39 and 40
that the set of matrices X of size K ×q such that negative moments of Rq(D2Fn ·X) controls
those of Rq(D2Fn) is large, in a measure-theoretical sense. The idea is to take X, a Gaussian
random matrix independent of the underlying field, and show that this control happens with
high probability.
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Control of the compressed Hessian. We connect the compressed Hessian with the Malliavin
matrix of an intermediary random vector living in a Wiener chaos of degree m − 1. Namely,
define

D�xFn :=
K∑

k=1

∂Fn

∂Nk

xk ∈ Wm−1, �x = (x1, . . . , xK) ∈ R
K;

DXFn := (D �x1Fn, . . . ,D �xd
Fn) ∈ Wd

m−1, X = (�x1, . . . , �xd) ∈ R
K×d .

We show that Rq(D2Fn ·X) = det(�(DXFn)). Then in Lemma 38 we exhibit a set of matrices
X, with large Gaussian measure, such that the law of DXFn is close to a Gaussian. To do
so, with respect to the enlarged Gaussian field (Nk), (Xij ), we have that DXFn ∈ Wd

m, and
we conclude thanks to well-known results, linking asymptotic normality on Wiener chaoses
and convergence of the norm of the Malliavin derivative to a constant, that are recalled in
Section 3.2.3.

Conclusion. Since the two sets of matrices constructed in the previous steps have large
Gaussian measure, say greater than 2/3, they have nonempty intersection. Therefore, our
construction yields a matrix X such that the two conditions hold simultaneously. Since
Rq(D2Fn · X) = det(�(DXFn)) and (DXFn) ⊂ Wd−1

m , by the vectorial version of the induc-
tion hypothesis, we conclude the induction step using that (DXFn) is asymptotically normal.

Remark on the proof: The importance of Gaussian variables. Evaluating directional deriva-
tives in independent Gaussian variables plays a decisive role in several steps of the proof. In
this short paragraph, we would like to ease the reader’s acclimation to this new paradigm.
The usual Malliavin derivative of a random variable F is defined in the direction of h ∈ H,
where H is an abstract separable Hilbert space. Due to the isomorphisms between separa-
ble Hilbert spaces, the literature has maintained that the choice of H is inconsequential. The
present study, together with our companion paper [17] where we use similar ideas in a non-
Gaussian setting, puts forward a preferred choice for H: a Gaussian space, independent of the
underlying Gaussian field. Such choice guarantees that the Malliavin derivative is an element
of an enlarged Wiener space, as defined in (12), and allows us to put into action all the fine
results regarding the Wiener space. Historically, we trace back this idea to [9], where Bouleau
chooses H to be a copy of the underlying L2 space.

2. Applications. Our result expresses a broad and versatile phenomenon. Numerous
statements establish normal convergence for polynomial functionals of a Gaussian field. Our
conclusions potentially comprehend all these situations. We illustrate the flexibility and the
breadth of our analysis with applications coming from different fields, without trying to be
exhaustive or stating optimal results.

2.1. Small ball estimates for multilinear Gaussian polynomials. The celebrated inequal-
ity of Carbery and Wright [11] states that, for (G1, . . . ,Gn) a standard Gaussian vector and
P a polynomial of degree d such that

E
[∣∣P(G1, . . . ,Gn)

∣∣] = 1,

we have

P
[∣∣P(G1, . . . ,Gn)

∣∣ ≤ ε
] ≤ cdε

1
d ,

where cd depends on d only and is independent from n. Applied to multilinear homogeneous
sums, this inequality plays a crucial role in the seminal contribution [31]. They obtain quanti-
tative invariance principles in various convergence metrics, and for the roughest metrics, the
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resulting bounds may depend on d through the exponents of the maximal influence. A multi-
linear homogeneous sum evaluated in a standard Gaussian vector being an archetypal exam-
ple of Wiener chaos, our Theorem 8 applies. Thus, provided dFM(P (G1, . . . ,Gn),N (0,1))

is small enough, the random variable P(G1, . . . ,Gn) has a bounded density. This implies that

P
[∣∣P(G1, . . . ,Gn)

∣∣ ≤ ε
] ≤ cdε

for an another constant cd . This considerably improves the exponent on ε.

2.2. Smooth convergence in Breuer–Major theorem. Consider (Xn)n∈Z a stationary se-
quence of centered and normalized Gaussian variables and f ∈ L2(γ ), where γ := N (0,1).
Breuer and Major [10] give sufficient conditions for the asymptotic normality of Zn :=
n−1/2 ∑n

k=1 f (Xk). Define the Hermite rank of f as the smallest integer s such that the
projection of f on the sth Hermite polynomial Hs is nonzero. [10] proves that if the correla-
tion function ρ(k) := E[X0Xk] belongs to s(N), then (Zn) converges in law to a Gaussian
distribution. In particular, whenever ρ ∈ 1(N), (Zn) converges in law to a Gaussian for any
f ∈ L2(γ ). When f is a polynomial, Hu, Nualart, Tindel and Xu [23] give conditions to
ensure C ∞-convergence of the densities, in terms of logarithmic integrability of the spectral
density. They use their conditions to control the negative moments of the Malliavin derivative
of (Zn). Since our results provide such controls as soon as we have normal convergence, we
obtain that the C ∞-convergence holds without any additional assumption.

THEOREM 12. Let (Xn) be a stationary normalized Gaussian sequence and P a polyno-
mial. Assume that the correlation function ρ belongs to s(N), where s is the Hermite rank of
P . Then the density of Zn = n−1/2 ∑n

k=1 P(Xk) converges to a Gaussian density in Wq,p(R)

for every q ≥ 0 and p ∈ [1,∞].

PROOF. Seeing the variables (Xk) as elements of a Gaussian field, (Zn) belongs to W≤m,
where m = deg(P ). Writing P = ∑m

i=s ciHi , the projections of Zn on Wi are given by

Ji (Zn) = ci√
n

n∑
k=1

Hi(Xk), i = s, . . . ,m.

By [10] each projection Ji (Zn) converges in law to a Gaussian variable, nondegenerate for
i = m since cm �= 0. The result follows from Corollary 10 (b). �

2.3. Normal convergence in entropy and Fisher information. Let us recall some notions
from information theory. Let ϕ be the density of the standard Gaussian distribution on R

d .
Let �F be a random vector of Rd with density f . The relative entropy of �F with respect to
N (0, Id) is

Ent[ �F ] := E
[
log

f ( �F)

ϕ( �F)

]
= E

[
logf ( �F)

] + 1

2
E
[‖ �F‖2] + d

2
log 2π,

while its relative Fisher information is

I[ �F ] := E
[∥∥∥∥ �∇ log

f ( �F)

ϕ( �F)

∥∥∥∥2]
=

∫
Rd

‖ �∇f (x)‖2

f (x)
dx − E

[‖ �F‖2].
The total variation distance, the relative entropy and the relative Fisher information are related
through Pinsker’s inequality, and the log-Sobolev inequality [15]

dTV
( �F,N (0, Id)

)2 ≤ 1

2
Ent[ �F ] ≤ 1

4
I[ �F ].
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Thus, convergence in Fisher information is an improvement to the convergence in entropy,
which is itself an improvement to the convergence in total variation. Finally, we define the
multivariate score function of �F

�ρ = (ρ1, . . . , ρd) := �∇ logf.

In this way

I[ �F ] = E
[∥∥ �ρ( �F)

∥∥2 − ‖ �F‖2] =
d∑

i=1

E
[
ρi( �F)2 − F 2

i

]
.

The following integration by parts characterises the score function:

(10) E
[
∂i�( �F)

] = E
[
ρi( �F)�( �F)

]
, � ∈ C 1

c

(
R

d), i = 1, . . . , d.

Consider a sequence of isotropic vectors ( �Fn) ⊂Wd
m converging in law to �N , the standard

Gaussian vector on R
d . We recall that isotropic means that the covariance matrix of �Fn is Id

for all n ∈ N. Let fn be the density of �Fn. By [39] we have that Ent[ �Fn] → 0. More precisely,
they show the bound,

Ent[ �Fn] ≤ O
(
�n| log�n|), �n := E

[‖ �Fn‖4 − ‖ �N‖4].
[39] actually provides an analogous bound for nonisotropic random vectors. We focus on
the isotropic case for simplicity. The general case can be obtained by multiplying all the
�Fn by the square root of the inverse of their covariance matrix. This bound is suboptimal

since by [1, 6, 25], in the case of sums of i.i.d., centred and normalized random variables
Sn = n−1/2 ∑n

k=1 Xk , we have

I[Sn] ≤ O
(
n−1).

Our findings allow us to improve upon the results of [39] and to provide an optimal rate of
convergence in entropy on Wiener chaoses. Actually, we obtain directly an optimal rate of
convergence in Fisher information.

THEOREM 13. Fix d ∈ N
∗, m1, . . . ,md ∈ N

∗ and a sequence of isotropic random vec-
tors ( �Fn)n∈N ⊂ ∏

i Wmi
. Assume that ( �Fn) converges in law to the standard d-dimensional

Gaussian distribution �N . Then there exists a constant C such that, for n in N large enough,

Ent[ �Fn] ≤ 1

2
I[ �Fn] ≤ C�n, �n := E

[‖ �Fn‖4 − ‖ �N‖4].
Actually, from this result we can obtain a uniform bound for the relative entropy in the

case d = 1.

COROLLARY 14. Fix m ∈ N
∗. There exists a constant C = Cm such for any F ∈ Wm

with unit variance, we have

Ent[F ] ≤ C E
[
F 4 − 3

]
.

REMARK 15. Thanks to Pinsker inequality, Corollary 14 implies the celebrated inequal-
ity [35],

dTV
(
F,N (0,1)

)2 ≤ C E
[
F 4 − 3

]
, F ∈ Wm EF 2 = 1.

However, in the inequality of [35], the constant C does not depend on the order of the
chaos m. For instance, [14] gives C = 1/3.
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PROOF OF COROLLARY 14. Since E�(F,F ) = m, arguing as in [34], Proposition 4.2,
one can find p = pm > 1 such that the Lp-norm of the density of F is uniformly bounded;
thus, there exists a constant C > 0 depending only on the m such that Ent[F ] ≤ C, uniformly
in F ∈ Wm with unit variance. Theorem 13 gives δ > 0 and C′ > 0 such that for any such F ,
if � := E[F 4 − 3] < δ, then Ent[F ] ≤ C′�. These two observations implies the claim. �

REMARK 16. Let us comment on the extension of Corollary 14 to the multivariate case.
Following [34], a uniform bound E[det�( �F)] ≥ β for some β > 0 yields a uniform upper
bound for Ent[ �F ]. If we assume such bound, we could implement the same strategy as above.
We stress that the mere assumptions �F ∈ ∏

i Wmi
isotropic does not imply E[det�( �F)] > 0.

The proof of Theorem 13 relies on two lemmas. The first lemma is a consequence of our
main result.

LEMMA 17. Let d ∈ N
∗ and m1, . . . ,md ∈ N

∗. Consider a sequence of isotropic vectors
( �Fn) ⊂ ∏

i Wmi
. Let �N ∼ N (0, Id). Assume that

�Fn
Law−−−→

n→∞
�N.

Define

Wn := (
Wij

n

)
1≤i,j≤d := �( �Fn)

−1;
W := (

Wij )
1≤i,j≤d := diag

(
m−1

1 , . . . ,m−1
d

)
.

Then for every p ≥ 1, there exist C > 0 and N > 0 such that, for every n ≥ N and every
1 ≤ i, j ≤ d ,∥∥Wij

n − Wij
∥∥
Lp + ∥∥�[

Wij
n ,Wij

n

]∥∥
Lp ≤ C�1/2

n , �n := E
[‖ �Fn‖4 − ‖ �N‖4].

PROOF. We fix a matrix norm ‖·‖, and p ≥ 1. If M is a random matrix, we write

‖M‖Lp := E
[‖M‖p] 1

p .

As a consequence of Theorem 4, there exists a constant C > 0 such that, for n large enough,∥∥�( �Fn)
−1∥∥

L2p ≤ C.

By hypercontractivity (13) and then [40], Proof of Theorem 4.2, there exists C > 0 such that,
for any n ≥ 1, ∥∥�( �Fn) − D

∥∥
L2p ≤ C0

∥∥�( �Fn) − D
∥∥
L2 ≤ C�1/2

n ,

where D := diag(m1, . . . ,md). Using that

�( �Fn)
−1 − D−1 = �( �Fn)

−1(D − �( �Fn)
)
D−1,

we deduce by continuity of the matrix product and the Cauchy–Schwarz inequality that there
exists C > 0 such that, for n large enough,∥∥�( �Fn)

−1 − D−1∥∥
Lp ≤ C�1/2

n .

Equivalently, ‖Wn − W‖Lp ≤ C�
1/2
n ; thus, supi,j ‖Wij

n − Wij‖Lp ≤ C�
1/2
n with possibly

another constant C > 0. This shows the inequality for the first term in the left-hand side.
For the second term, by Cramer formula

Wij
n − Wij = Z

ij
n

det(�( �Fn))
,
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where Z
ij
n is polynomial in the entries of �( �Fn). We have ‖Zij

n ‖L2p ≤ C�
1/2
n , and since Z

ij
n

is polynomial, we deduce, by integration by parts, the bound ‖�[Zij
n ,Z

ij
n ]‖L2p ≤ C�

1/2
n .

These two bounds and the bound on negative moments of det(�( �Fn)) give the bound
‖�[Zij

n ,Z
ij
n ]‖Lp ≤ C�

1/2
n for n large enough. �

The second lemma provides, on Wiener chaoses, an explicit formula for the score function
through integration by parts with Malliavin operators.

LEMMA 18. Let d ∈ N
∗, m1, . . . ,md ∈ N

∗. Take �F = (F1, . . . ,Fd) ∈ ∏
i Wmi

. Define
W = (Wij )1≤i,j≤d := �(F)−1. Then the score function �ρ = (ρ1, . . . , ρd) of �F is given by

ρi( �F) :=
d∑

j=1

E
[
mjFjWij − �[Fj ,Wij ]| �F ]

.

PROOF. Fix � ∈ C 1
c (Rd). By the chain rule for �,

�
[
�( �F),Fi

] =
d∑

j=1

∂j�( �F)�[Fi,Fj ], i = 1, . . . , d.

In matrix notation, ⎛⎜⎜⎝
�
[
�( �F),F1

]
...

�
[
�( �F),Fd

]
⎞⎟⎟⎠ = �( �F)

⎛⎜⎜⎝
∂1�( �F)

...

∂d�( �F)

⎞⎟⎟⎠ .

Equivalently, ⎛⎜⎜⎝
∂1�( �F)

...

∂d�( �F)

⎞⎟⎟⎠ = W

⎛⎜⎜⎝
�
[
�( �F),F1

]
...

�
[
�( �F),Fd

]
⎞⎟⎟⎠ .

Thus, we find

∂i�( �F) =
d∑

j=1

Wij�
[
�( �F),Fj

]
, i = 1, . . . , d.

By integration by parts, we deduce

E
[
∂i�( �F)

] =
d∑

j=1

E
[
Wij�

[
�( �F),Fj

]]

=
d∑

j=1

E
[
Wij�( �F)mjFj

] − E
[
�[Fj ,Wij ]�( �F)

]

=
d∑

j=1

E
[(

mjFjWij − �[Fj ,Wij ])�( �F)
]
.

The result follows in view of (10). �

PROOF OF THEOREM 13. For the sake of conciseness, we drop the dependence in n in
this proof. By Lemma 18 we have

ρi( �F) − Fi = E[Zi | �F ],
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where

Zi = (
mi − W−1

ii

)
WiiFi + ∑

j �=i

mjFjWij − �[Fj ,Wij ].

By Lemma 17 we find that

‖Zi‖ ≤ C�1/2.

In this case we conclude by the triangle inequality. �

2.4. Regularization of spectral moments of random matrices. In linear algebra many
quantities of interest, such as moments of the spectral measure, are polynomials in the entries
of the matrix. Thus, the theory of random matrices provides another context where our results
naturally apply.

Let n ∈ N
∗. The Gaussian Orthogonal Ensemble GOE(n) is the probability distribution

on the set of n × n symmetric matrices with density with respect to the Lebesgue measure
is proportional to exp(−nTr(A2)/4). Equivalently, a random n × n symmetric matrix An ∼
GOE(n) if and only if the entries of An above the diagonal are independent Gaussian, with
variance n−1 out of the diagonal and with variance 2n−1 on the diagonal. Following the
famous semicircle law [46], when properly rescaled, the moments of the spectral measure of
An converges to the respective moments of the semicircle law,

1

n
TrAp

n

a.s.−−−→
n→∞ cp := 1

2π

∫ 2

−2
xp(4 − |x|2)1/2 dx.

Moreover, by [24] the normalized fluctuations Tr(Ap
n) − ncp converge in distribution to a

Gaussian limit N (0, σ 2
p) for some σp �= 0.

We stress that both Wigner [46] and Johansson [24] results are actually available for sym-
metric random matrices with entries possibly non-Gaussian. In the case of Gaussian entries,
our results improve the mode of convergence of the fluctuations.

THEOREM 19. Let An ∼ GOE(n) for each n ∈ N
∗, and let p ≥ 1. Then the sequence of

densities of Tr(Ap
n) − ncp converges to a Gaussian density in Wq,r(R) for every q ≥ 0 and

r ∈ [1,∞].

PROOF. For the convergence of densities in Sobolev spaces, we use Corollary 10 (c).
Consider the Gaussian field on N

∗ × N
∗ of independent standard Gaussian (Gi,j ). Write

Fn := TrAp
n − ncp . We have that

TrAp
n = 1

n
p
2

∑
1≤i1,...,ip≤n

Gi1,i2Gi2,i3 · · ·Gip−1,ipGip,i1 .

Thus, Fn ∈ W≤p . [13] shows that ρ(D2Fn) → 0. Moreover, (Fn) is bounded in L2. We are
left to verify that Var[JpFn] ≥ O(1). Let us write

Ip := {
(i1, . . . , ip) ∈ {1, . . . , n}p : {il, il+1} �= {il′, il′+1}, l = 1, . . . , p

}
.

In view of the explicit expression of Fn, we find that

JpFn = 1

np/2

∑
(i1,...,ip)∈Ip

Gi1,i2Gi2,i3 · · ·Gip−1,ipGip,i1 + Rn.

In the expression above and in view of the definition of Ip , all the random variables appear-
ing in the sum are independent. The term Rn, whose explicit expression is irrelevant, consists
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in sums of degree p of products of Hermite polynomials evaluated in the Gij ’s, at least one
of these polynomials being of degree strictly greater than 1. By independence of the Gij ’s,
the first sum and Rn are uncorrelated. Thus,

Var[JpFn] ≥ 1

np
E
[( ∑

(i1,...,ip)∈Ip

Gi1,i2Gi2,i3 . . .Gip−1,ipGip,i1

)2]

≥ cp

np

∣∣{(i1, . . . , ip) ∈ {1, . . . , n}p : i1 < i2 < · · · < ip
}∣∣

= cp

np

(
n

p

)
≥ O(1).

Corollary 10 gives the announced convergence in Wq,r(R) for every q ≤ 0 and r ∈ [1,∞].
�

REMARK 20. We stress that our approach is rather general and could be extended to a
situation where the (Gi,j ) have more general variances, that is, c1n

−1 ≤ Var[Gi,j ] ≤ c2n
−1

for some constants c1, c2 > 0.

2.5. Control of the inverse of strongly correlated Wishart-type matrices. Fix n and d ∈
N

∗. Let B be a n×d matrix whose lines are independent random vectors of Rd with common
distribution N (0,�). Wishart matrices are, in their classical sense, matrices of the form
A = tBB . We can see the lines of Bn as realizations of normal experiments and see An :=
1
n

tBnBn as the empirical covariance matrix of the sample. When p is fixed and n → +∞,
after renormalization the sequence of Wishart matrices converges to the actual covariance,

An → �.

We consider a broad generalization of Wishart matrices. The lines of Bn are not necessar-
ily independent, nor identically distributed, and we only assume the convergence property
An → �. We then obtain a good control on the inverse A−1

n . Our general version allows for
correlation in the sample and might be of interest in statistics.

THEOREM 21. Fix n and p ∈ N
∗. Let An = tBnBn, where Bn is a matrix n × p with

entries in a Gaussian field. We assume that (An) converges in probability to a deterministic
invertible matrix �. Then for every q ≥ 1, there exist an integer N and a constant C such
that

E
[
det(An)

−q] ≤ C, n ≥ N.

In particular, A−1
n → �−1 in Lq for every q ≥ 1.

PROOF. Consider a Gaussian vector �G = (G1, . . . ,Gd) ∼ N (0, Id). Without loss of gen-
erality, assume that the Gi’s are elements of the underlying Gaussian field but independent of
the entries of An. Let �Fn := Bn

�G ∈ Wd
2 . Conditionally to Bn, �Fn is a Gaussian vector with

covariance matrix tBnBn = An. Since, by assumption, An → � in probability, we deduce
that �Fn converges in distribution to N (0,�). By Theorem 4 and for n large enough,

E
[
det

(
�( �Fn)

)−q] ≤ c.

We have Fi = ∑
k Bn[i, k]Gk; thus, by bilinearity and independence of Bn and �G,

�(Fi,Fj ) = ∑
k,l

�
(
Bn[k, i],Gk,Bn[l, j ]Gj

)
= ∑

k,l

GkGl�
(
Bn[k, i],Bn[l, j ]) + ∑

k,l

Bn[k, i]�(Gi,Gj )Bn[l, j ].
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Defining M is the nonnegative random matrix, whose entries are given by

Mij := ∑
k,l

Gk�
(
Bn[i, k],Bn[j, l])Gl,

we thus have, using that �( �G) = Id ,

�( �Fn) = tBnBn + M = An + M.

This give �( �Fn) ≥ An. The conclusion follows. �

REMARK 22.

(a) For simplicity, our statement is formulated for a matrix Bn with entries taking values
in a Gaussian field. From the proof, we see that the conclusion of the theorem remains valid
if we take the entries of Bn with values in a Wiener chaos Wm.

(b) Whenever the lines of Bn are i.i.d., developing the determinant with the Cauchy–Binet
formula and bounding it from below by a sum of positive independent terms yield a more
direct proof.

(c) We rely on similar strategy to obtain explicit estimates in the proof of our main theo-
rems.

3. Prolegomena on Wiener chaoses. In this section we provide the necessary defini-
tions, notations, and preliminary lemmas required for the proof of the main theorem. In all
the article, for any parameter α, Cα stands for a constant which only depends on α and whose
value may possibly change from line to line. Nevertheless, for the sake of clarity, we generally
do not track the dependence on the order of the chaoses, typically denoted by m.

3.1. Succinct review on Wiener chaoses.

3.1.1. The Wiener space. We let γ := N (0,1) be the standard Gaussian distribution on
R. We work on the following countable product of probability spaces, which we call a Wiener
space:

(11) (�,F ,P) := (
R,B(R), γ

)N
.

We define the coordinate functions

Ni :=
{
� −→ R,

(x0, x1, . . .) �−→ xi.

By construction, the Ni ’s are independent random variables on (�,F ,P), with common law
the standard Gaussian distribution. We sometimes require countably many auxiliary indepen-
dent standard Gaussian random variables, say (N ′

i ), independent of (Ni). In the same way,
we build such a family as coordinates of auxiliary Wiener spaces, and one is left to work for
instance on an enlarged Wiener space

(12) (�̃, F̃ , P̃) := (
R,B(R), γ

)N × (
R,B(R), γ

)N
.

Since N
2 is equipotent with N, an enlarged Wiener space is actually a Wiener space. In

particular, we typically do not explicitly refer to this enlarging construction.
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3.1.2. The Wiener chaoses. The Hermite polynomials

Hk(x) := (−1)kex2/2 dk

dxk
e−x2/2, k ∈ N

form a Hilbert basis of L2(γ ). For m ∈ N, the mth Wiener chaos Wm is defined as the L2(P)-
closure of the linear span of functions of the form

∏∞
i=0 Hki

, where the ki ’s satisfy
∑∞

i=0 ki =
m. The above product is finite since H0(x) = 1 and only finitely many integers (ki)i≥0 are
nonzero. For m = 0, we find that W0 is the linear space of constant functions. Importantly,
Wiener chaoses provide the orthogonal decomposition

L2(P) =
∞⊕

m=0

Wm.

We sometimes work in a finite sum of Wiener chaoses. Accordingly, let us define

W≤m :=
m⊕

k=0

Wk.

3.1.3. Hypercontractivity and equivalence of norms. We often use that on W≤m all the
Lp(P)-norms are equivalent. Namely, for all m ∈ N and 1 ≤ p < q < ∞, there exists c =
cm,p,q such that

(13) ‖F‖p ≤ ‖F‖q ≤ c‖F‖p, F ∈ W≤m.

This fact is well known in the range 1 < p < q < ∞ as a consequence of hypercontractiv-
ity estimates, for instance [36], Cor. 2.8.14. The equivalence of norms can then be extended to
the case p = 1 with an interpolation argument that we recall now. Fix p = 1 and q ∈ (p,∞).
Of course, we only need to show the last inequality in (13). Take F ∈ W≤m. A celebrated
interpolation inequality, which is a consequence of Hölder’s inequality, states that

‖F‖pθ ≤ ‖F‖1−θ
p0

‖F‖θ
p1

, p0, p1 ∈ [1,∞], θ ∈ (0,1),

where 1
pθ

:= 1−θ
p0

+ θ
p1

. With p0 = p = 1 and p1 = q + 1, there exists θ ∈ (0,1) such that
pθ = q . Thus, we find, by hypercontractivity,

‖F‖q ≤ ‖F‖1−θ
1 ‖F‖θ

q+1 ≤ cm,q,q+1‖F‖1−θ
1 ‖F‖θ

q .

This gives the announced extension.

3.1.4. Reduction to finitely generated Wiener chaoses. For the sake of simplicity, we
conveniently work with finitely generated Wiener chaoses W(0)

m defined as the linear span
of functions of the form

∏∞
i=0 Hki

with the ki ’s subject to
∑∞

i=0 ki = m. This simplification
avoids the use of infinite dimensional operators and allows us to manipulate instead matrices.
Although we state Theorems 3 and 4 for general Wiener chaoses, it is sufficient to establish
them on W(0)

m instead of Wm. Working in this finite setting, we show that, for all q ≥ 1, there
exists δq,Cq > 0 such that

(14) dFM
(
F,N (0,1)

) ≤ δq ⇒ E
[
�[F,F ]−q] ≤ Cq, F ∈ W(0)

m .

Let us show that by density of W(0)
m in Wm, (14) is actually sufficient to conclude on Wm.

Indeed, by continuity of F �→ dFM(F,N (0,1)) with respect to the L2(P)-topology, we find
that the condition on the left-hand side of (14) is L2(P)-closed. Moreover, for Fn → F in
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L2(P), on W≤m, �[Fn,Fn] → �[F,F ] in L2, and thus, up to extraction, convergence almost
sure. By Fatou’s lemma we have

E
[
�[F,F ]−q] ≤ lim inf

n→∞ E
[
�[Fn,Fn]−q] ≤ Cq.

We often work with polynomial random variables living finite sums of chaoses. Thus, we
define

W(0)
≤m :=

m⊕
k=0

W(0)
k .

3.2. Malliavin calculus. We introduce the operators coming from Malliavin’s calculus
used in this article. We refer to the textbooks [36, 41] for a broader introduction. Since we
work with polynomial mappings evaluated in finite-dimensional Gaussian vectors, we skip
any technical considerations regarding domain and integrability that frequently appear in
Malliavin calculus.

3.2.1. The square field operator. We fix a Gaussian vector �N = (N1, . . . ,NK). Given
two multivariate polynomial mappings F and F̃ ∈ R[N1, . . . ,NK ], the square field operator
of F and F̃ is

(15) �[F, F̃ ] :=
K∑

i=1

∂F

∂Ni

( �N)
∂F̃

∂Ni

( �N).

If �F = (F1, . . . ,Fd) is a random vector whose coordinates are as above, the Malliavin
matrix �( �F) is the d ×d positive symmetric random matrix defined by �( �F)i,j := �[Fi,Fj ].

When considering F and F̃ ∈ R[N1, . . . ,NK,G1, . . . ,GK ′ ], where �N and �G are indepen-
dent standard Gaussian vectors, we set

�N [F,F ] :=
K∑

i=1

∂F

∂Ni

( �N, �G)
∂F̃

∂Ni

( �N, �G),(16)

�G[F,F ] :=
K ′∑
i=1

∂F

∂Gi

( �N, �G)
∂F̃

∂Gi

( �N, �G).(17)

In this way, �[F,F ] = �N [F,F ]+�G[F,F ]. Similarly, when �F = (F1, . . . ,Fd) is a random
vector, the conditional Malliavin matrices �N( �F) and �G( �F) are defined by �N( �F)i,j :=
�N [Fi,Fj ] and �G( �F)i,j := �G[Fi,Fj ]. We recall that �(F, F̃ ) = 〈DF,DF̃ 〉. By [41],
Proposition 1.2.2, D is continuous on W≤m, and thus the operators � thus defined can be
extended by density to W≤m for all m ∈ N.

3.2.2. Malliavin’s lemma. As a consequence of the seminal work of Malliavin [30] con-
cerning the proof of the Hörmander criterion, a random vector �F of the Wiener space, which
is sufficiently smooth in some sense and such that det(�( �F)) has negative moments at any or-
der, has a smooth density. Moreover, it is a quantitative statement enabling to bound uniform
norms of the derivatives of the densities with respect to negative moments of the determinant
of the Malliavin matrix. In the framework of random vectors whose components are in a finite
sum of Wiener chaoses, this result takes the following simpler form.

LEMMA 23. Let m and d ∈ N
∗, and q ∈ N. Then there exist q ′ ∈ N and C > 0, both

depending only on (m,d, q) such that

‖f ‖Wq,1(Rd ) ≤ C E
[
det�( �F)−q ′]



1182 R. HERRY, D. MALICET AND G. POLY

for any random vector �F ∈ Wd≤m with its Euclidean norm ‖ �F‖ normalized such that

E[‖ �F‖2] = d and whose corresponding density is denoted by f .

PROOF. This lemma is nowadays rather standard in Malliavin calculus and relies on
successive integrations by parts. References [17], Theorem 2.2, or [16], Theorem 3.2, provide
similar statements. The exact statement of the theorem comes from [41], Proposition 2.1.4,
with the choice G = 1 and uj = DFj ; see the paragraph after the proof, in particular [41],
equation (2.32), and the subsequent equation. �

3.2.3. Normal convergence and carré du champ on Wiener chaoses. We repeatedly
call upon the following emblematic result from the literature of limit theorems for Wiener
chaoses: a sequence of chaotic random variables is asymptotically normal if and only if its
carré du champ converges to a constant. We state the most general version for vectors.

THEOREM 24 ([35, 38, 42]). Let d ∈N
∗, and m1, . . . ,md ∈ N

∗. Then

�Fn
law−−−→

n→∞ N (0, Id) ⇐⇒ �( �Fn)
L2(P)−−−→
n→∞ diag(m1, . . . ,md), ( �Fn) ⊂ ∏

i

Wmi
.

Moreover, with C > 0 a constant depending only on m1, . . . ,md ,

dFM
( �F,N (0, Id)

) ≤ C
∥∥�( �F) − diag(m1,m2, . . . ,md)

∥∥
L2, �F ∈ ∏

i

Wmi
.

4. The second Wiener chaos. In this section we study the case of the second Wiener
chaos W2. Since to every element F ∈ W2 corresponds a symmetric quadratic form, reduc-
tion theory makes the analysis much easier. We present here some of these tools, and we use
them to prove Theorem 3 in this simpler context. The proof in the general case relies in a
crucial way on the result for W2.

4.1. Quadratic forms.

4.1.1. Diagonalization. Every element F ∈ W(0)
2 is of the form

F =
K∑

i,j=1

ai,jXi,j , Xi,j :=
{
NiNj , if i �= j,

N2
i − 1, if i = j,

for some K ∈N
∗ and where A = (ai,j ) is a symmetric matrix of size K × K . Thus, defining

q(x, x) :=
K∑

i,j=1

ai,j xixj , x ∈ R
K,

a diagonalization procedure yields

F = q( �N, �N) − E
[
q( �N, �N)

] =
K∑

i=1

λi

(
Ñ2

i − 1
)
,

where (λi) is the spectrum of A, and (Ñi) is a new sequence of independent standard Gaus-
sian variables, obtained by an orthogonal transformation of (Nk).
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4.1.2. Spectral considerations. The following spectral quantities play a crucial role in
our proofs. Given a symmetric matrix A with spectrum {λi}, we define its spectral remain-
ders:

(18) Rq(A) := ∑
i1 �=i2 �=···�=iq

λ2
i1

· · ·λ2
iq

, q ∈ N
∗.

In all the paper, the above notation i1 �= i2 �= · · · �= iq indicates summation over all pairwise
distinct indices.

We conveniently generalize the definition of Rq to nonsquare matrices. In this case we
replace the spectrum by the singular values of A. Namely,

(19) Rq(A) := ∑
i1 �=i2 �=···�=iq

μi1 · · ·μiq , q ∈ N
∗,

where {μi} is the spectrum of tAA. We highlight that Rq(A) = Rq(
tA). The generalized

Cauchy–Binet formula [18] expresses Rq(A) in terms of extracted determinants,

(20) Rq(A) = ∑
|I |=|J |=q

det(AI,J )2,

where AI,J is the extracted matrix AI,J := (ai,j )i∈I,j∈J .
If A is symmetric with spectrum ordered by decreasing absolute values |λ1| ≥ |λ2| ≥ · · · ,

we define the squared distance to matrices of rank less q

rq(A) := inf
{‖A − B‖2 : rk(B) ≤ q − 1

} = ∑
i≥q

λ2
i , q ∈ N

∗

with ‖·‖ designating the Euclidean norm on matrices.

PROOF OF THE EQUALITY. This is a consequence of the Eckart–Young–Mirsky Theo-
rem for the Frobenius norm [21], 7.4.15. This theorem states that the orthogonal projection
of A on the matrices of rank less or equal than q is

proj≤q(A) = PDq
tP,

where Dq := diag(λ1, . . . , λq,0 . . . ,0), with (λi) the spectrum of A, and P is the orthogonal
matrix that diagonalizes A. �

Since Rq(A) = 0 if and only if A has rank less than q , in some sense Rq(A) also measures
the distance of A to matrices with rank q − 1 or less. Actually, the two quantities Rq(A) and
rq(A) are comparable.

LEMMA 25. Let q ∈N and A be a symmetric matrix,

Rq−1(A)rq(A) ≤Rq(A) ≤ qRq−1(A)rq(A);(21)

q∏
i=1

ri(A) ≤Rq(A) ≤ q!
q∏

i=1

ri(A);(22)

rq(A)q ≤Rq(A) ≤ q!r1(A)q−1rq(A).(23)
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PROOF. We only prove (21), since (22) proceeds from an immediate induction, and (23)
follows from the monotony of (rq(A))q . For the second inequality in (21), we write

Rq(A) = q! ∑
i1<i2<···<iq

λ2
i1

· · ·λ2
iq

= q! ∑
i1<i2<···<iq−1

λ2
i1

· · ·λ2
iq−1

∑
iq>iq−1

λ2
iq︸ ︷︷ ︸

≤rq (A)

≤ q!
( ∑

i1<i2<···<iq−1

λ2
i1

· · ·λ2
iq−1

)
rq(A) = qRq−1(A)rq(A).

For the first inequality, we have

Rq(A) = ∑
i1 �=···�=iq−1

λ2
i1

· · ·λ2
iq−1

∑
iq /∈{i1,...,iq−1}

λ2
iq︸ ︷︷ ︸

≥rq(A)

≥Rq−1(A)rq(A).

This completes the proof. �

Define the spectral radius of A, ρ(A) := maxλ∈spec(A)|λ|. From the above estimates, we
deduce the following useful estimate.

LEMMA 26. Let A be a n × n symmetric matrix such that Tr(A2) = 1 and ρ(A) ≤ 1
q

,
then

Rq(A) ≥
q−1∏
k=1

(
1 − kρ(A)

)
.

PROOF. Writing as before λ1, . . . , λn for the eigenvalues of A, we have
∑n

i=1 λ2
i = 1 and

supi |λi | = ρ(A), so ri(A) ≥ 1 − (i − 1)ρ(A), and the result follows from (22). �

4.2. Proof of the main theorem on the second Wiener chaos. With the spectral tools in-
troduced above, we now establish Theorem 3 for elements of W2. Theorem 3 follows from
the following more general estimate.

PROPOSITION 27. Let q ∈ N. There exists C > 0 such that

E
[
�[F,F ]−q] ≤ CR2q+1(A)−

1
2 , F ∈ W(0)

2 .

PROOF. We assume that q �= 0; otherwise, the claim is trivial. Let F ∈ W(0)
2 . Consider

the matrix A associated to F through the quadratic form. A is of size K ×K for some K ∈N

and has eigenvalues (λk)1≤k≤K . Diagonalizing A, we can assume that

F =
K∑

k=1

λk

(
N2

k − 1
)
.

Fix t ∈ R. It follows that

�[F,F ] =
K∑

k=1

4λ2
kN

2
k ;

E
[
e− t2

2 �[F,F ]] =
K∏

i=1

1

(1 + 4t2λ2
i )

1/2
.
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Expanding the product gives the trivial bound
∏K

i=1(1 + t2λ2
i ) ≥ t2qRq(A). Thus, we get

E
[
e− t2

2 �[F,F ]] ≤ 1

tq ·Rq(A)1/2 .

Using that

(24) x−q = cq

∫ ∞
0

tq−1e−tx dt, x > 0, cq := 1

(q − 1)! ,

we find that,

E
[
�[F,F ]−q] = cq

∫
R

∣∣t2q−1∣∣E
[
e− t2

2 �[F,F ]]dt ≤ cq

R2q+1(A)1/2 .

The result follows. �

We now complete the proof in the case of the second Wiener chaos.

PROPOSITION 28. Theorem 3 holds for m = 2. In particular, a sequence (Fn) ⊂ W2

converging to a Gaussian distribution satisfies: for every q ∈ N, there exist N ∈ N and C > 0
such that

E
[
�[Fn,Fn]−q] ≤ C, n ≥ N.

PROOF. We assume that q �= 0; otherwise, the claim is trivial. As explained in Sec-
tion 3.1.4, it is sufficient to prove our claims on W(0)

2 . By density, without loss of gener-

ality we assume that (Fn) ⊂ W(0)
2 . We denote by An the associated matrix of size kn × kn

and (λi,n) its spectrum. By Proposition 27 it is sufficient to bound from below the quantities
Rq(An). By assumption we have

⎧⎨⎩E
[
F 2

n

] −−−→
n→∞ 1,

E
[
F 4

n

] −−−→
n→∞ 3; ⇐⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

kn∑
i=1

λ2
i,n −−−→

n→∞
1

2
,

kn∑
i=1

λ4
i,n −−−→

n→∞ 0.

This implies that ρ(An) → 0. Since, by Lemma 26, Rq(An) ≥ ∏q−1
k=1(1−kρ(An)), we deduce

that Rq(An) is bounded by below for n large, and we conclude. �

5. Sharp operator. In this section we establish estimates regarding Malliavin deriva-
tives, when we specifically choose to take derivatives in the directions of a Gaussian space.
In this case the Malliavin derivative is an element of an enlarged Wiener space. Thus, we can
use Gaussian analysis to conclude. Through these estimates, we obtain that negative moments
of �[F,F ] are estimated by the spectral remainders of the Malliavin Hessian of D2F . The
estimates of this section are akin to our results from [17] obtained in a more general setting.
For the sake of completeness, we present self-contained arguments tailor-made to the case
of normal convergence on Wiener chaoses. For simplicity, we state our results in finite sums
of Wiener chaos, they still hold for more general random variables by density arguments,
similar to that of Section 3.1.4.
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5.1. Iterated sharp operators. The sharp operator, introduced by Bouleau [9] with
a slightly different definition, is a convenient way to interpret the Malliavin deriva-
tive. For a standard Gaussian vector �N = (N1, . . . ,NK) and a polynomial mapping F ∈
R[N1,N2, . . . ,NK ], the Bouleau derivative of F is

(25) �[F ] :=
K∑

i=1

∂F

∂Ni

( �N)Gi,

where �G = (G1, . . . ,GK) is a Gaussian vector independent of �N . This operator intimately
relates to the square-field operator through the Laplace–Fourier identity

E
[
eit�[F ]] = E

[
exp

(
− t2

2
�[F,F ]

)]
.

Our work exploits other connections between F , �[F,F ], and �[F ], and they will become
apparent to the reader in the rest of this work. Intuitively, the random variable �[F ] is simpler
than F , in view of the independence between the terms Gi and ∂F

∂Ni
( �N).

We generalize the definition to cover iterated Malliavin derivatives. We fix (Gi,j ) a se-
quence of independent standard Gaussian variables, independent of �N . For a polynomial
function F ∈ R[N1, . . . ,NK ], we let

�k[F ] := ∑
1≤i1,...,ik≤K

∂kF

∂Ni1 · · · ∂Nik

( �N)G1,i1 · · ·Gk,ik , k = 1,2, . . . .

When k = 1, the definition of �k is consistent with that of �. When k = 0, the above formula is
understood as �0[F ] = F . By density the operators �k extends to Wm (to see this, observe that
�k is simply the iterated Malliavin derivative when we choose H to be a Gaussian space and
conclude by [36], Proposition 2.3.4). We regard �k[F ] as an element of an enlarged Wiener
space, in the sense of (12), generated by the variables (Nk) and (Gi,j ).

These operators satisfy the following elementary properties:

1. F ∈Wm ⇒ �k[F ] ∈ Wm, and F ∈ W≤m ⇒ �k[F ] ∈ W≤m.
2. F ∈Wm ⇒ Var[�k[F ]] = m(m − 1) · · · (m − k + 1))Var[F ].

The first point follows immediately, since, for F ∈ Wm, the partial derivatives with respect
to the Ni ’s are in Wm−1 and in view of the independence of �N and �G. For the second point,
we use a consequence of the integration by part formula, which gives for F ∈ Wm; see, for
instance, [41], Proposition 1.2.2, that

E
[
F 2] = 1

m

K∑
i=1

E
[(

∂F

∂Ni

)2]
= 1

m
E
[
�[F ]2].

Iterating this formula gives the second point.

5.2. Negative moments estimates. Estimates on the negative moments of �[�k[F ], �k[F ]]
yield estimates on those of �[F,F ].

PROPOSITION 29. Let m and k ∈ N
∗ with k ≤ m. For all q ∈ N, there exists q ′ ∈ N and

C > 0 such that, for every F ∈ W≤m with E[F 2] = 1,

E
[
�[F,F ]−q] ≤ C E

[
�
[
�k[F ], �k[F ]]−q ′]

.
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PROOF. Let F ∈ W≤m. Write Fk = �k[F ] for k = 0, . . . ,m. For k ≥ 1, the following
induction relation holds:

Fk =
K∑

i=1

∂Fk−1

∂Ni

Gi,k.

This shows that Fk has the same law as V
1
2

k N , where

Vk =
K∑

i=1

(
∂Fk−1

∂Ni

)2
= �N [Fk−1,Fk−1]

and N ∼ N (0,1) is independent of Vk . In particular, we have the Fourier–Laplace identity

(26) E
[
eitFk

] = E
[
e− t2

2 �N [Fk−1,Fk−1]].
Fix m, q , and k as in the theorem. In Malliavin’s result (Lemma 23), take the q ′ ∈ N associated
with 2q + 1. If E[�[Fk,Fk]−q ′ ] = ∞, then the statement is empty, and the proof is complete.
Thus, we assume that E[�[Fk,Fk]−q ′ ] < ∞. By Lemma 23 the density fk of Fk belongs to
W 2q+1,1(R), and

‖fk‖W 2q+1,1(R) ≤ C E
[
�[Fk,Fk]−q ′]

.

(4) gives the bound on the Fourier transform,

‖fk‖Nj | ≤ ‖fk‖W 2q+1,1(R), j ≤ 2q + 1.

Therefore, up to changing the constant C,∣∣t2q−1 E
[
eitFk

]∣∣ ≤ C

t2 + 1
E
[
�[Fk,Fk]−q ′]

, t ∈ R.

Reporting in the Fourier–Laplace identity (26) yields

∣∣t2q−1∣∣E
[
exp

(
− t2

2
�N [Fk−1,Fk−1]

)]
≤ C

t2 + 1
E
[
�[Fk,Fk]−q ′]

, t ∈ R.

Using (24), we find that

E
[
�N [Fk−1,Fk−1]−q] = cq

∫ ∞
0

|t |2q−1 E
[
e− t2

2 �N [Fk,Fk]]dt ≤ C E
[
�[Fk,Fk]−q ′]

,

where �N is defined in (16). Since

�[Fk−1,Fk−1] = �N [Fk−1,Fk−1] + �G[Fk−1,Fk−1] ≥ �N [Fk−1,Fk−1],
we deduce that

E
[
�[Fk−1,Fk−1]−q] ≤ C E

[
�[Fk,Fk]−q ′]

.

The statement follows by an immediate induction. �

Combining Proposition 29 for k = 2 with Proposition 27, we obtain the estimate for nega-
tive moments of �[F,F ] in terms of spectral remainders for ∇2F , the Hessian matrix of F ,
that is,

∇2F :=
(

∂2F

∂Ni∂Nj

)
1≤i,j≤K

, F ∈ R[N1, . . . ,NK ].
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PROPOSITION 30. Let m ∈ N>0 and q ∈ N, there exist q ′ ∈ N and C > 0 such that, for
every F ∈ R[N1, . . . ,NK ] of degree m with Var[F ] = 1,

E
[
�[F,F ]−q] ≤ C E

[
Rq ′

(∇2F
)− 1

2
]
.

PROOF. Fix m ∈N
∗ and q ∈ N. Let us denote by (Ai,j ) the Hessian matrix of F , and let

F̃ := �2[F ]. Then

F̃ = ∑
i,j≥1

Ai,jGi,1Gj,2.

By Proposition 29 there exist q ′′ ∈ N and C > 0 such that

E
[
�[F,F ]−q] ≤ C E

[
�[F̃ , F̃ ]−q ′′]

.

Thus, it is sufficient to bound from above the right-hand side. Since A and �G are independent,
fixing a realization of the entries Ai,j , F̃ is a function of the variables Gi,1 and Gi,2 and can
be seen as an element of the second Wiener chaos, with associated Hessian matrix

Ã =
(

0 A

A 0

)
.

The characteristic polynomial of Ã is t �→ χA(t)χA(−t), where χA stands for the character-
istic polynomial of A. Hence,

spec(Ã) = {
λ,−λ : λ ∈ spec(A)

}
.

This yields that Rp(A) ≤Rp(Ã) (p ∈N
∗). Applying Proposition 27 gives q ′ := 2q ′′ + 1 and

C > 0 such that

EG

[
�G[F̃ , F̃ ]−q ′′] ≤ CRq ′(Ã)−

1
2 ≤ CRq ′(A)−

1
2 ,

where EG (resp., �G) means that we only integrate (resp., derivate) with respect to the vari-
ables Gi,j . Using that �[F̃ , F̃ ] ≥ �G[F̃ , F̃ ] and integrating with respect to N , we get

E
[
�[F̃ , F̃ ]−q ′′] ≤ C E

[
Rq ′(A)−

1
2
]
.

This concludes the proof. �

6. Proof of the main theorems.

6.1. Setup. In this section we prove Theorem 3. We proceed by induction on the degree
m of the chaos. Let us define the property to be established.

For every sequence (Fn)n≥1 ⊂ Wm,[
Fn

Law−−−→
n→∞ N (0,1)

] ⇒
[
lim sup
n→+∞

E
[
�[Fn,Fn]−q] < +∞, q ∈N

]
.

(P(m))

This property is equivalent to the following nonsequential version:

∀q ∈N, ∃δ = δq > 0, ∃C = Cq > 0 :
∀F ∈Wm,

[
dFM

(
F,N (0,1)

) ≤ δ
] ⇒ [

E
[
�[F,F ]−q] ≤ C

]
.

(P(m))

Section 4 establishes P(2). Let us prove that, for every m ≥ 3, P(m − 1) ⇒ P(m).
We often use that controls on negative moments in P(m) are expressible in terms of small

ball estimates. More precisely, for every sequence of random variables (Xn), we recall the
following elementary equivalence:

1. For every q ≥ 0, there exists N ∈ N such that supn≥N E[|Xn|−q] < +∞.
2. For every q ≥ 0, there exist N ∈N and C > 0 such that

∀ε > 0, sup
n≥N

P
[|Xn| ≤ ε

] ≤ Cεq.
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6.2. The discretization procedure. Through a discretization procedure, we obtain that
P(m) is equivalent to the following vectorial version. For d ∈ N

∗, we consider

For every sequence ( �Fn)n≥1 ⊂ Wd≤m,[ �Fn
Law−−−→

n→∞ N (0, Id)
] ⇒

[
lim sup
n→+∞

E
[
det�( �Fn)

−q] < +∞, q ∈ N

]
.

(Pd(m))

As above, it is equivalent to the nonsequential version,

∀q ∈ N, ∃δ = δq > 0, ∃C = Cq > 0 :
∀ �F ∈ Wd

m,
[
dFM

( �F,N (0, Id)
) ≤ δ

] ⇒ [
E
[
det

(
�( �F)

)−q] ≤ C
]
.

(Pd(m))

In this section we prove the implication P(m) ⇒ [∀d ∈ N
∗, Pd(m)] via a more general state-

ment.

PROPOSITION 31. Let d and m ∈ N
∗. Consider a sequence ( �Fn) ⊂ Wd≤m that is also

L2-bounded sequence. Then there is equivalence between the two following properties:

(i) For every sequence (�an) in the sphere S
d−1, and all q > 0

lim sup
n→+∞

E
[
�[ �Fn · �an, �Fn · �an]−q] < +∞.

(ii) For all q > 0, lim supn→+∞ E[det�( �Fn)
−q] < +∞.

COROLLARY 32. For any m ≥ 2, if P(m) holds, then Pd(m) also holds for every d ∈ N
∗.

The proof of the proposition relies on a discretization procedure of the sphere. Such pro-
cedure is frequently used in Malliavin calculus, for instance [16], Lemma 4.7. We use the
following discretization result for the d − 1-dimensional Euclidean sphere S

d−1.

LEMMA 33. For all d ∈ N \ {1} and N ∈ N, there exist Cd > 0 (not depending on N )
and S

d−1,N ⊂ S
d−1 such that Card(Sd−1,N ) ≤ CdNd and

∀a ∈ S
d−1,∃b ∈ S

d−1,N , such that ‖a − b‖ ≤ Cd

N
.

PROOF. We fix an positive integer N . Write [[−N,N]] := {−N,−N +1, . . . ,N −1,N}.
For every I = (i1, i2, . . . , id) ∈ [[−N,N ]]d , we set bI := I

N
. For every a ∈ S

d−1, we may find
I ∈ [[−N,N ]]d such that all the coordinates of bI − a are ≤ 1

N
. Hence,

∣∣‖bI‖ − 1
∣∣ ≤ ‖bI − a‖ ≤

√
d

N
.

Whenever N ≥ 2
√

d , the above choice of bI yields ‖bI‖ ≥ 1
2 . Thus, setting aI := bI‖bI ‖ , we

get

‖aI − a‖ ≤ 2
∥∥bI − a‖bI‖

∥∥ ≤ 2‖bI − a‖ + 2
∣∣1 − ‖bI‖

∣∣ ≤ 4
√

d

N
.

We define

S
d−1,N :=

{
bI

‖bI‖ = aI : I ∈ [[−N,N]]d/{0, . . . ,0}
}
.

We have proved that, provided that N ≥ 2
√

d , for any a ∈ S
d−1, we may find aI ∈ S

d−1,N

such that ‖a − aI‖ ≤ 4
√

d
N

. Besides Card(Sd−1,N ) ≤ (2N + 1)d . �
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Let us prove the proposition.

PROOF OF PROPOSITION 31. In all the proof, we write indistinctly ‖·‖ for the Euclidean
norm of a vector, or the Euclidean norm of a matrix, also known as its Hilbert–Schmidt norm.
We first prove (i) ⇒ (ii), which is the only implication used in the paper. Assuming (i), we
want to obtain a bound

P
[
det�( �Fn) ≤ ε

] ≤ Cqε
q, ε > 0, q ≥ 0.

For any S symmetric positive matrix d × d , we have

inf
a∈Sd−1

t �aS�a = λ1(S) ≤ det(S)
1
d ,

where λ1(S) is the smallest eigenvalue of S. Thus, it suffices to prove that for every q ≥ 0
there exist N ∈ N and C > 0 such that, for n ≥ N ,

P
[

inf
�a∈Sd−1

�[ �Fn · �a, �Fn · �a] ≤ ε
]
≤ Cεq, ε > 0.

Let N be an integer to be chosen later. By Lemma 33, for every �a ∈ S
d−1 and �b ∈ S

d−1,N ,
we have that ‖�a − �b‖ ≤ C

N
. In this way∣∣�[ �Fn · �a, �Fn · �a] − �[ �Fn · �b, �Fn · �b]∣∣ = ∣∣t (�a − �b)�( �Fn)(�a + �b)

∣∣ ≤ 2C

N

∥∥�( �Fn)
∥∥.

This gives

inf
�a∈Sd−1

�[ �Fn · �a, �Fn · �a] ≤ inf
�a∈Sd−1,N

�[ �Fn · �a, �Fn · �a] + 2C

N

∥∥�( �Fn)
∥∥.

Consequently, we have{
inf

�a∈Sd−1
�[ �Fn · �a, �Fn · �a] ≤ ε

}
⊂
{

inf
a∈Sd−1,N

�[ �Fn · �a, �Fn · �a] ≤ ε + 2CK

N

}
∪ {∥∥�( �Fn)

∥∥ > K
}
.

We choose N = � 1
ε2 � and K = �1

ε
� so that, for a different constant C,

(27)
{

inf
�a∈Sd−1

�[ �Fn · �a, �Fn · �a] ≤ ε
}

⊂
{

inf
a∈Sd−1,N

�[ �Fn · �a, �Fn · �a] ≤ Cε
}

∪
{∥∥�( �Fn)

∥∥ >
1

ε

}
.

By assumption there exists C > 0 such that, for n large,

sup
�a∈Sd−1

P
[
�[ �Fn · �a, �Fn · �a] ≤ ε

] ≤ Cεq+2d, ε > 0,

and we find, with another constant C′ > 0,

P
[

inf
a∈Sd−1,N

�[ �Fn · �a, �Fn · �a] ≤ Cε
]
≤ ∑

a∈Sd−1,N

P
[
�[ �Fn · �a, �Fn · �a] ≤ Cε

]
≤ CNd sup

a∈Sd−1
P
[
�[ �Fn · �a, �Fn · �a] ≤ Cε

]
≤ C′ 1

ε2d
ε2d+q = C′εq.

(28)

Since ( �Fn) is bounded in L2 and ( �Fn) ⊂ Wd≤m, (�( �Fn)) is also bounded in L2 and then
in Lq by equivalence of norms on Wiener chaoses Section 3.1.3. Markov inequality gives for
some C,

P
[∥∥�( �Fn)

∥∥ >
1

ε

]
≤ Cεq.
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We conclude. For completeness, let us sketch the proof of the converse implication (ii) ⇒ (i).
In this case we start from the bound

det(S) =
d∏

i=1

λi ≤ λ1‖A‖d−1.

Thus,

inf
�a∈Sd−1

�a · �( �Fn)�a = λ1
(
�( �Fn)

) ≥ det
(
�( �Fn)

)∥∥�( �Fn)
∥∥−(d−1)

.

Now, (�( �Fn)) is bounded in all the Lp(P) (p �= ∞), in view on the assumptions on ( �Fn) and
the equivalence of the norms on W≤m (Section 3.1.3). �

6.3. Normal approximation in smaller chaos. In this section, starting from an element of
a chaos Wm whose law is close to a normal law, we construct variables in Wm−1 whose laws
are also close to normal laws. This construction allows us to use the induction hypothesis in
the proof of Theorem 3. We start with some notations.

DEFINITION 34. Let F ∈R[N1, . . . ,NK ] be a polynomial. If �x = (x1, . . . , xK) is a vec-
tor of RK , we denote by D�xF the directional derivative following �x, namely,

D�xF :=
K∑

k=1

xk

∂Fn

∂Nk

.

If X is a matrix K × d with column vectors (�x1, . . . , �xd), we write

DXF := (D�x1F, . . . ,D�xd
F ).

If F ∈ Wm, then D�xF ∈ Wm−1 and DXF ∈ Wd
m−1.

The following proposition states that if F ∈ Wm is close in law to the standard Gaussian
N (0,1) and if we choose X randomly with respect to the Gaussian measure, then DXF ∈
Wd

m−1 is close in distribution to the Gaussian vector N (0,mId)) with large probability. We
write γK,d for the standard Gaussian distribution on the matrices of size K × d .

PROPOSITION 35. Let m ∈ N
∗. Consider a sequence (Fn) ⊂ W(0)

m such that, for all
n ∈ N, Fn ∈ R[N1, . . . ,NKn] for some Kn ∈ N

∗, and Fn → N (0,1) in law. Then for every
d ∈ N

∗ and every ε > 0,

γKn,d

{
X ∈ MKn,d(R) : dFM

(
DXFn,N (0,mId)

) ≥ ε
} −−−→

n→∞ 0.

REMARK 36. The result states that, for n sufficiently large, there exists a set of matrices
X of large Gaussian measure and such that the laws of all the DXFn’s are closed to a normal
distribution with covariance independent of the X. It might seem contradictory, since by
multiplying X by a scalar λ the distribution should change. Contrary to the finite dimensional
case, the image of an infinite Gaussian measure by a nontrivial homothety is singular with
respect to the initial measure. For instance, by the law of large number, the Borel set

A :=
{
(xi) ∈ R

N : 1

n

n∑
i=1

x2
i −−−→

n→∞ 1

}
,

has full γN-measure. However, the set

λA := {λx : x ∈ A}
has measure 0 as soon as |λ| �= 1.
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PROOF. Let (Fn) be as in the theorem. Let (Gi,j )i,j≥1 be a family of independent stan-
dard Gaussian variables, independent of �N . For every n ∈ N, we define the random Kn × d

matrix Gn and the random vector �Vn by

Gn := (Gi,j )1≤i≤d,1≤j≤Kn,

�Vn := DGnFn = (Vn,1, . . . , Vn,d).

In the Wiener space generated by the variables (Gi,j ) and (Nk), �Vn ∈ Wd
m, and the coordi-

nates read

(29) Vn,i =
Kn∑
j=1

∂Fn

∂Nj

Gi,j , i = 1, . . . , d.

It follows that �Vn has same law as �[Fn,Fn] 1
2 �G′ where �G′ is a standard Gaussian vector

independent of �N . Since by Theorem 24,

(30) �[Fn,Fn] L2−−−−→
n→+∞ m,

we deduce that

�Vn
law−−−→

n→∞ N (0,mId).

Using Theorem 24, we obtain that

(31) �( �Vn)
L2−−−→

n→∞ m2Id .

Consider the decomposition �( �Vn) = �G( �Vn) + �N( �Vn), where �G( �Vn) (resp., �N( �Vn))
is the Malliavin matrix of �Vn with respect with the coordinates Gi,j (resp., Nk), as defined in
(16) and (17). From (29) we directly compute the matrix �G( �Vn),

�G[Vn,i, Vn,j ] = 0, i �= j ;

�G[Vn,i, Vn,i] =
Kn∑
j=1

(
∂Vn,i

∂Gi,j

)2
=

Kn∑
j=1

(
∂Fn

∂Nj

)2
= �[Fn,Fn], i = j.

Thus, �G( �Vn) = �[Fn,Fn]Id . By (30) we obtain that �G( �Vn) → mId in L2. Combining with
(31), we deduce that

(32) �N( �Vn)
L2−−−→

n→∞ m(m − 1)Id .

Since DXFn depends only on the variables Nk’s and not the Gi,j ’s, we get

�(DXFn) = �N(DXFn), for any deterministic X ∈ MKn,d(R).

Thus, we rewrite (32) as

(33)
∫
MKn,d(R)

∥∥�(DXFn) − m(m − 1)Id

∥∥2
L2 dγKn,d(X) −−−→

n→∞ 0.

For X ∈ MKn,d , DXFn ∈ Wd
m−1 so that Theorem 24 gives a constant C = Cm > 0 such

that

(34) dFM
(
DXFn,N (0,mId)

)2 ≤ C
∥∥�(DXFn) − m(m − 1)Id

∥∥2
L2 .

Finally, combining (33) and (34) yields∫
MKn,d (R)

dFM
(
DXFn,N (0,mId)

)2 dγKn,d(X) → 0,

and we conclude by Markov’s inequality. �
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6.4. A compressing argument. If F = F(N1, . . . ,NK) ∈ W(0)
m , we need to study the

K × K matrix A := ∇2F . To that extent, we fix a wisely-chosen K × q matrix X for a
fixed q , and we study the K × q compressed matrix B := AX. We choose X in a way that
B contains most of the information on A. At the same time, B is simpler to study since the
dimension is reduced. This strategy appears in information theory under the name of “com-
pressed sensing.”

6.4.1. Control of the spectral remainder of the compressed Hessian. An elementary com-
putation shows that the q × q matrix tBB = �(DXF), and we use the tools developed above
in order to study this Malliavin matrix. We recall that we have define the spectral remainders
of a rectangular matrix M in Section 4.1.2 in terms of the singular values and that we have

Rq(M) = Rq

((tMM
) 1

2
)
, q ∈ N

∗.

LEMMA 37. If F = F(N1, . . . ,NK) is polynomial and if X ∈ MK,q(R), then

Rq

(∇2FX
) = det

(
�(DXF)

)
.

PROOF. Let X := ( �x1, . . . , �xq) = (xi,j )i≤K,j≤q for some �xj ∈ R
K and B := (∇2F)X.

Then

∂(D�xj
F )

∂Ni

=
K∑

k=1

xk,j

∂2F

∂Ni∂Nk

= Bi,j , i ≤ K, j ≤ q.

This shows that �∇(DXF) = B and �(DXF) = tBB .
Moreover, since tBB is a q × q matrix, Rq(B) is by definition the product of the spectral

values of tBB , so it’s determinant. Thus,

Rq(B) = det
(tBB

) = det
(
�(DXF)

)
. �

LEMMA 38. Let m, p, and q ∈ N
∗, with m ≥ 3. Assume the induction property P(m−1).

Then there exists C > 0 such that for every (Fn(N1, . . . ,NKn)) ⊂ W(0)
m converging in law to

the standard Gaussian distribution, then, for n ∈ N, large enough, the set

En := {
X ∈ MKn,q(R) : E

[
Rq

(∇2FnX
)−p] ≤ C

}
has γKn,q -measure more than 2

3 .

PROOF. By Corollary 32, Pq(m − 1) holds. In particular, for all p > 0, there exist ε > 0
and C > 0 such that, for any �V ∈ Wq

m−1,

(35) dFM
( �V ,N (0,mIq)

) ≤ ε ⇒ E
[
det

(
�( �V )

)−p] ≤ C.

Applying to �V := DXFn, we find by Lemma 37

dFM
(
DXFn,N (0,mIq)

) ≤ ε ⇒ E
[
Rq

(∇2FnX
)−p] ≤ C.

By Proposition 35, for n ∈ N, large enough, the set{
X ∈ MKn,q(R) : dFM

(
DXFn,N (0,mIq)

) ≤ ε
}

has γKn,q -measure more than 2/3. This concludes the proof. �
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6.4.2. Relating the spectral remainder of the compressed Hessian and the Hessian. In
this step we derive estimates on Rq(A) from estimates on Rq(AX) for a generic matrix X.

LEMMA 39. For every p,q ∈ N
∗, there exists C > 0 such that, for every d ×d symmetric

matrix M ,

E
[
Rq(MX )p

] ≤ CRq(M)p,

where X is a d × q matrix whose entries are independent standard Gaussian variables.

PROOF. Let us write M = tP�P with P orthogonal and � diagonal, with diagonal
values λ1, . . . , λd . We have Rq(M) = Rq(�). Also, since PX and X have same law, we
find that

t (MX )MX = t (PX )�2PX Law= tX�2X .

In particular, be definition of the spectral remainders for rectangular matrix, E[Rq(MX )p] =
E[Rq(�X )p]. Thus, we assume that M = �. The entries of �X are given by (�X )i,j =
λiXi,j . Thus, for any subsets I , J of cardinality q , the extracted determinant on I × J is∏

i∈I λi det(XI,J ). By the Cauchy–Binet formula (20),

Rq(�X ) = ∑
|I |=q

∏
i∈I

λ2
i SI , where SI := ∑

|J |=q

det(XI,J )2.

The variables SI have same law and, in particular, same expectation c. This gives

E
[
Rq(�X )

] = c
∑

|I |=q

∏
i∈I

λ2
i = cRq(�).

The claim follows for p = 1. For p �= 1, we use the equivalence of norms (13); since Rq(�X )

is a positive polynomial of degree q in Gaussian variables, there exists C = Cp,q such that

E
[
Rq(�X )p

] ≤ C E
[
Rq(�X )

]p = CRq(�)p,

and the result follows. �

LEMMA 40. Let p, q ∈ N
∗. There exists C > 0 such that, for every K ∈ N

∗ and every
random symmetric matrix A in MK,K(R), the set

E :=
{
X ∈ MK,q(R) : E

[Rq(AX)p

Rq(A)p

]
≤ C

}

has γK,q -measure more than 2
3 .

PROOF. By Lemma 39 there exists C = Cp,q such that

Rq(A)p ≥ C

∫
MK,q(R)

Rq(AX)p dγK,q(X).

Thus, ∫
MK,q(R)

E
[Rq(AX)p

Rq(A)p

]
dγK,q(X) ≤ E

[
1

Rq(A)p
× CRq(A)p

]
= C.
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As a result, we obtain, by Markov inequality, that

γK,q

{
X ∈ MK,q(R) : E

[Rq(AX)p

Rq(A)p

]
≥ 3C

}

≤ 1

3C

∫
MK,q(R)

E
[Rq(AX)p

Rq(A)p

]
dγK,q(X)

≤ 1

3
.

(36)

The proof is complete. �

6.5. Proof of the induction step. PROOF OF THEOREM 3. We establish the induction
step P(m− 1) ⇒ P(m). Let m ∈N, m ≥ 3, and assume P(m− 1). We fix a sequence (Fn) ⊂
W(0)

m converging in law to N (0,1). As before, we assume that Fn ∈ R[N1, . . . ,NKn], and
we set An := ∇2Fn, which is a random matrix of size Kn × Kn. Fix p and q ∈ N

∗, and
fix n ∈ N large enough for Lemma 38 to apply to Fn. Thus, there exists E1 ⊂ MKn,q(R) of
γKn,q -measure more than 2

3 such that

(37) E
[
Rq(AnX)−p] ≤ C1, X ∈ E1,

where C1 > 0 depends only on m, p, and q . By Lemma 40 there exists E2 ⊂ MKn,q(R) of
γKn,q -measure more than 2

3 such that

(38) E
[Rq(AnX)p

Rq(A)p

]
≤ C2, X ∈ E2,

where C2 depends only on p and q . Since γKn,q(E1 ∩ E2) ≥ 1
3 , the sets E1 and E2 have

a nonempty intersection. In particular, there exists X ∈ MKn,q(R) such that estimates (37)
and (38) hold simultaneously. Then by Cauchy–Schwarz inequality

E
[
Rq(An)

−p
2
]2 ≤ E

[
Rq(AnX)−p]E

[Rq(AnX)p

Rq(An)p

]
≤ C1C2.

Since in the previous argument, p and q are arbitrary positive integers, we have shown

lim sup
n→+∞

E
[
Rq(An)

−p] < +∞, p, q ∈ N
∗.

Specifying the above estimate to p = 1
2 , we deduce from Proposition 30 that

lim sup
n→+∞

E
[
�[Fn,Fn]−q] < +∞, q ∈ N.

This shows P(m). This completes the induction step and thus the proof of Theorem 3. �

7. Multivariate random variables and sums of chaoses. In this section we prove The-
orems 4 and 9.

7.1. A central limit theorem for iterated sharp operators. We recall that the iterated sharp
operators are defined on polynomials F ∈ R[N1, . . . ,NK ] by

�k[F ] := ∑
1≤i1,...,ik

∂kF

∂Ni1 · · · ∂Nik

( �N)G1,i1 · · ·Gk,ik ,

where (Gi,j ) is a family of independent standard Gaussian independent of Nk . We prove
that on Wiener chaoses, the property of converging to a Gaussian distribution is preserved by
applications of iterated sharp.
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PROPOSITION 41. For any sequence (Fn)n∈N in Wm, we have

Fn
Law−−−→

n→∞ N (0,1) ⇒ �k[Fn] Law−−−→
n→∞ N

(
0, σ 2),

where σ 2 = m(m − 1) · · · (m − k + 1).

We prove the following lemma. We write γ := N (0,1) and γN := ⊗
k∈N γ .

LEMMA 42. Let (Fn) a sequence in W(0)
m such that Fn

Law−−−→
n→∞ N (0,1). Then there exists

a subsequence (Fφ(n)) such that, for γN-almost every sequence (xi)i ,∑
i

∂Fφ(n)

∂Ni

( �N)xi
Law−−−→

n→∞ N (0,m).

PROOF. For an infinite vector �x := (x1, x2, . . .), we set

D�xFn := ∑
i

∂Fn

∂Ni

( �N)xi,

where the sum is finite since Fn ∈ W(0)
m . By Proposition 35 with d = 1, we deduce that the

sequence of measurable mappings �x �→ dFM(D�xFn,N (0,m)) tends to 0 in probability on
(RN, γN). Thus, there exists a subsequence which converges for γN-almost every vector �x.
The result follows. �

PROOF OF PROPOSITION 41. By successive applications of Lemma 42, there exists a
subsequence (Fφ(n)) such that, for γN⊗· · ·⊗γN-almost every sequences (x1,i )i , . . . , (xk,i)i ,∑

1≤i1,...,ik

∂kFφ(n)

∂Ni1 · · · ∂Nik

( �N)x1,i1 · · ·xk,ik

Law−−−→
n→∞ N

(
0, σ 2),

where σ 2 = m(m − 1) · · · (m − k + 1). Take a continuous and bounded function h : R →
R. By the previous convergence, we find that, for γN ⊗ · · · ⊗ γN-almost every sequences
(x1,i )i , . . . , (xk,i)i ,

E
[
h

( ∑
1≤i1,...,ik

∂kFφ(n)

∂Ni1 · · · ∂Nik

( �N)x1,i1 · · ·xk,ik

)]
−−−→
n→∞

∫
h(σx)γ (dx).

Integrating each of xi,j ’s with respect to γN, we obtain, by dominated convergence, that

E
[
h
(
�k[Fϕ(n)])] −−−→

n→∞

∫
h(σx)γ (dx).

This gives convergence in law of the subsequence. Since this reasoning applies on every
subsequence of (Fn), we conclude on the convergence in law of the full sequence. �

7.2. Proofs of the remaining theorems. The following statement is slightly more precise
than Theorem 9; we use it for the proof of Theorem 4. Recall that we write JmF for the
projection of F on the mth Wiener chaos.

PROPOSITION 43. Let m and q ∈ N. There exist δ > 0, r > 0, and C > 0 such that the
following statement holds: for every F ∈W≤m,[

dFM
(
JmF,N (0,1)

) ≤ δ
] ⇒ [

E
[
�[F,F ]−q] ≤ C‖F‖r

L2

]
.
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PROOF. Let F ∈ W≤m and F̃ := JmF . By definition of the sharp operators, �m[F̃ ] =
�m[F ]. Let q ∈ N. Applying Proposition 29 to ‖F‖−1

L2 F , there exist q ′ ∈ N and C > 0 such
that

E
[
�[F,F ]−q] ≤ C‖F‖r

L2 E
[
�
[
�m[F ], �m[F ]]−q ′]

,

where r := 2(q ′ − q). By Proposition 41, for every δ′ > 0, there exists δ > 0 such that

dFM
(
F̃ ,N (0,1)

) ≤ δ ⇒ dFM
(
�m[F̃ ],N (

0, σ 2)) ≤ δ′,

where σ := m! 1
2 . By Theorem 3, for every q ′ ∈ N, there exist δ′ > 0 and C > 0 such that

dFM
(
�m[F ],N (

0, σ 2)) ≤ δ′ ⇒ E
[
�
[
�m[F ], �m[F ]]−q ′] ≤ C.

Combining the three estimates above gives the result. �

Theorem 9 follows immediately. Now, we prove Theorem 4. In order to use Proposition 31,
we prove the following lemma.

LEMMA 44. Let d ∈ N
∗, m1, . . . ,md ∈ N

∗, and q > 0. There exist δ > 0 and C > 0 such
that the following statement holds: for every �F = (F1, . . . ,Fd) ∈Wm1 ×· · ·×Wmd

such that
dFM( �F,N (0, Id)) ≤ δ, for every �a ∈ S

d−1, the variable F�a = ∑d
i=1 aiFi = �F · �a satisfies

E
[
�[F�a,F�a]−q] ≤ C.

PROOF. We proceed by induction on d . The case d = 1 is Theorem 3. We fix d ≥ 2,
m1, . . . ,md , F1, . . . ,Fd , and �a as in the statement. We set m := maxi mi . For ε > 0, we bound
P[�[F�a,F�a] ≤ ε] in two different ways, according to the relative size of |ad | compared to ε.
Fix q ∈ N and ε ∈ (0,1/2), and set α := min(

q
2r

,1) where r is given by Proposition 43:

• Assume |ad | ≥ εα . Then Proposition 43, applied to 1
ad

F�a , implies that if dFM(Fd,N (0,1))

is small enough, then

E
[
�[F�a,F�a]−q] ≤ C|ad |−r

for a constant C = Cd,m,q . Thus,

P
[
�[F�a,F�a] ≤ ε

] ≤ C|ad |−rεq ≤ Cε
q
2 .

• Assume |ad | ≤ εα . Define

F ′
�a :=

d−1∑
i=1

aiFi.

By using the induction hypothesis with some number Q to be chosen later, we find a
constant C = Cd,m,Q > 0 such that if dFM( �F ′,N (0, Id−1)) is small enough, then

E
[
�
[
F ′

�a,F
′
�a
]−Q] ≤ C.

By hypercontractivity (13) we find another constant C = Cm > 0 such that∥∥�[
F ′

�a,F
′
�a
] − �[F�a,F�a]

∥∥
LQ ≤ C|ad | ≤ Cεα.

Then, using that ε ≤ 1
2ε

α
2 (since α ≤ 1 and ε < 1/2), we write

P
[
�[F�a,F�a] ≤ ε

] ≤ P
[
�
[
F ′

�a,F
′
�a
] ≤ ε

α
2
] + P

[∣∣�[
F ′

�a,F
′
�a
] − �[F�a,F�a]

∣∣ ≥ 1

2
ε

α
2

]
,
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where

P
[
�
[
F ′

�a,F
′
�a
] ≤ ε

α
2
] ≤ CεQα

2

P
[∣∣�[

F ′
�a,F

′
�a
] − �[F�a,F�a]

∣∣ ≥ 1

2
ε

α
2

]
≤

(2‖�[F ′
�a,F

′
�a] − �[F�a,F�a]‖LQ

ε
α
2

)Q

≤ CεQα
2 .

Choosing Q such that Qα ≥ q , for instance, Q ≥ 4r , we deduce that there exists C =
Cd,m,q such that

P
[
�[F�a,F�a] ≤ ε

] ≤ Cε
q
2 .

Combining the two cases, we obtained that for every q ≥ 0 if dFM( �F,N (0, Id)) is small
enough, there exists C = Cd,m,q such that

P
[
�[F�a,F�a] ≤ ε

] ≤ Cε
q
2 , ε > 0.

The conclusion follows. �

PROOF OF THEOREM 4. Let m1, . . . ,md ∈ N
∗. Consider a sequence ( �Fn) ⊂ Wm1 ×· · ·×

Wmd
, converging in law to N (0, Id), and a sequence (�an) ⊂ S

d−1. For every q ≥ 0, we apply
Lemma 44 to �Fn, and we deduce that there exists N ∈ N such that

sup
n≥N

E
[
�[ �Fn · �an, �Fn · �an]−q] < +∞, n ≥ N.

Then by Proposition 31, for every q ≥ 0, there exists N ∈ N such that

E
[
det�( �Fn)

−q] ≤ C, n ≥ N. �
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