
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 152, Number 1, January 2024, Pages 403–409
https://doi.org/10.1090/proc/16448

Article electronically published on October 13, 2023

A SHORT PROOF OF A STRONG FORM OF THE THREE

DIMENSIONAL GAUSSIAN PRODUCT INEQUALITY

RONAN HERRY, DOMINIQUE MALICET, AND GUILLAUME POLY

(Communicated by Amarjit Singh Budhiraja)

Abstract. We prove a strong form of the Gaussian product conjecture in di-
mension three. Our purely analytical proof simplifies previously known proofs
based on combinatorial methods or computer-assisted methods, and allows us
to solve the case of any triple of even positive integers which remained open
so far.

1. Introduction and main result

Contribution to the Gaussian product conjecture. In this note, we prove
Theorem 1.1.

Theorem 1.1. Let (X1, X2, X3) be centered real Gaussian vector, and p1, p2, p3 ∈
2N. Then,

(1) E[Xp1

1 Xp2

2 Xp3

3 ] ≥ E[Xp1

1 ]E[Xp2

2 ]E[Xp3

3 ],

with equality if and only if X1, X2, X3 are independent.

Hence, our result completely solves the case n = 3 of a strong form of the
celebrated Gaussian product conjecture. For short, let us introduce the following
notation.

Definition 1.2. We say that n ∈ N, and p1, . . . , pn ∈ (0,∞) satisfy the Gaussian
product inequality, and we write GPIn(p1, . . . , pn) provided for all real centered
Gaussian vectors (X1, . . . , Xn):

E

[
n∏

i=1

|Xi|pi

]
≥

n∏
i=1

E[|Xi|pi ],

with equality if and only if X1, . . . , Xn are independent. With a slight abuse of
notation, we might also write GPIn(0, p2, . . . , pn) instead of GPIn−1(p2, . . . , pn).

Conjecture 1.3. For all n ∈ N, and all p1, . . . , pn ∈ 2N, GPIn(p1, . . . , pn) holds.

Historically, the first instance of GPI-type inequalities goes back to [1, Thm.
3], where J. Arias-de-Reyna establishes the complex counterpart of the conjecture
and uses it to solve the complex polarization problem in relation with long-standing
problems regarding bounds on polynomials in several variables. The short and
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elegant argument of [1] exploits the fact that the monomials form an orthogonal
system of the L2-space with respect to the standard n-dimensional complex Gauss-
ian measure, and it cannot be adapted to the real case of the Gaussian product
conjecture. Despite having received considerable attention since the seminal con-
tribution of [1], the general case of the conjecture had, until now, remained wide
open. The previous state of the art regarding the Gaussian product conjecture was
the following.

Theorem 1.4. The following cases of Conjecture 1.3 are known.
(a) For all p1, p2 ∈ 2N, GPI2(p1, p2).
(b) ([3]) For all n ∈ N, GPIn(2, 2, . . . , 2).
(c) ([8]) For all p ∈ 2N, GPI3(p, p, p).
(d) ([16]) For all p ∈ 2N, GPI3(p, 6, 4) and GPI4(p, 2, 2, 2).
(e) ([13]) For all p and q ∈ 2N, GPI3(2, p, q).

The above results are obtained through sophisticated methods. In particular,
[8] relies on a heavily combinatorial approach in connection with the theory of
Gaussian hypergeometric functions; while [13, 16] is a computer-assisted method
based on the SOS algorithm which provides an explicit expansion of a positive
multivariate polynomial into a sum of squared quantities. On the contrary, our
approach is purely analytical and combines an optimization procedure through the
use of Lagrange multipliers with Gaussian analysis. Our contribution not only
drastically simplifies the proof of the known cases in dimension three (Theorem
1.4(c) and (d)), but it also enables us to fully resolve the three dimensional case,
that is to say for every choice of even integer exponents.

Other works related to Gaussian product inequalities. One of the most
striking recent contributions regarding Gaussian inequalities is the following Royen’s
inequality for Gaussian correlations.

Theorem 1.5 ([12]). Consider integers 1 ≤ k ≤ n and (X1, . . . , Xn) centered
Gaussian vectors. Then,

P

[
max
1≤i≤n

|Xi| ≤ 1

]
≥ P

[
max
1≤i≤k

|Xi| ≤ 1

]
P

[
max
k<i≤n

|Xi| ≤ 1

]
.

More precisely, [12] actually establishes Theorem 1.5 in the setting of the multi-
variate Gamma distributions; only the Gaussian inequality is relevant for our dis-
cussion here. Despite its similarity with GPI-type inequalities, the beautiful tech-
niques of [12] based on explicit computations for Laplace transform of the square of
Gaussian yielding a monotonicity property for the quantity P[maxi|Xi| ≤ 1] along
an interpolation of covariance matrices cannot be adapted to solve Conjecture 1.3.
Let us also observe that in Theorem 1.5, one can iteratively factor out Gaussian
vectors of smaller size. In analogy, with this property, [2] considers a variant of
Conjecture 1.3 where one can iteratively factor out Gaussian vectors of smaller size
in the inequality and calls it “the strong form of the Gaussian product inequality”.
They have established it for Gaussian vectors whose covariance matrices have non-
negative entries, but they have, in the very same paper, observed that for Gaussian
vectors with arbitrary covariance matrices this stronger form of the conjecture is
false.

Since it is known that GPIn(p, p, . . . , p) for all n ∈ N and all p ∈ 2N is sufficient
to imply the real polarization conjecture, certain authors, such as [8], have dubbed
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the case p1 = · · · = pn of Conjecture 1.3 the “Gaussian product conjecture”. This
is why we say that our inequality is “a strong form” of the above conjecture to
highlight that our method allows to consider any triplet of distinct even integers.
We do not claim that this denomination is canonical.

Actually, due to the difficulty of the general case of the conjecture, several authors
have tackled subcases of it by considering only Gaussian vectors whose covariance
matrices have a particular form or other related distributions. Let us mention
[2, 4, 7, 15] for such results with increasing degrees of generality related to some
form of positivity. In the same spirit, [11] obtains a Gaussian product inequality
for the case of multinomial covariances.

Other authors have also considered variations of Conjecture 1.3 where they
consider other functions than monomials. For instance, [10] establishes a vari-
ant of the Gaussian product inequality involving Hermite polynomials ; [17] proves
GPIn(p1, . . . , pn) for all n ∈ N and p1, . . . , pn ∈ (−1, 0); [9] establishes a version of
the inequality involving trigonometric functions; [14] derives a reverse GPI2(p1, p2)
when p1 ∈ (−1, 0) and p2 > 0. [5] later generalizes those results to the case of trace
Wishart distributions and to completely monotone functions.

2. Proof of the main result

In the rest of the paper, we fix a probability space (Ω,F ,P) supporting an
independent sequence (Gk)k∈N of centered normalized Gaussian variables on Ω. In
the following, Σ = (σi,j) is a real symmetric non-negative matrix of size n. To Σ,

we associate a centered Gaussian vector �X = (X1, . . . , Xn) with covariance matrix

Σ by setting �X = Σ1/2 �G where �G = (G1, . . . , Gn). Let p1, . . . , pn ∈ 2N∗, and
h(x1, . . . , xn) = xp1

1 . . . xpn
n . Our strategy consists in studying the points where the

map Φ: Σ �→ E[h(X1, . . . , Xn)] reaches its minimum. Our argument allows us to
characterize those minimal points for n = 2 or 3. Using Wick formula [6, Thm.
1.28], it is readily checked that Φ is polynomial in the entries of Σ. We shall need
the following standard lemma. We recall a proof for the sake of self-containedness.

Lemma 2.1. Let (X1, · · · , Xn) be a Gaussian vector that is centered with covari-
ance matrix Σ non-necessarily invertible. Then it holds:

E[Xih(X1, . . . , Xn)] =
n∑

j=1

σi,j E
[
∂xj

h(X1, . . . , Xn)
]
, i ∈ {1, . . . , n};(2)

∂

∂σi,j
E[h(X1, . . . , Xn)] = E

[
∂xi

∂xj
h(X1, . . . , Xn)

]
, i �= j ∈ {1, . . . , n}.(3)

Proof of Lemma 2.1. In view of Wick formula, (2) and (3) are equalities involving
polynomials in the entries of Σ. It is thus sufficient to establish them for an invert-

ible Σ. In this case, let us write fΣ for the density distribution associated with �X.
A direct computation yields

xifΣ +

n∑
j=1

σi,j∂xj
fΣ = 0, i ∈ {1, . . . , n}.

(2) readily follows. In order to prove (3), consider the Fourier transform of fΣ:

f̂Σ(x1, · · · , xn) = exp

⎛⎝−1

2

n∑
i,j=1

xixjσi,j

⎞⎠, (x1, . . . , xn) ∈ Rn.
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Differentiating this formula, we obtain for i �= j:

∂̂σi,j
fΣ = ∂σi,j

f̂Σ = −xixj f̂Σ = ̂∂xi
∂xj

fΣ.

Since the Fourier transform is into, we get that ∂σi,j
fΣ = ∂xi

∂xj
fΣ, from which (2)

readily follows. �

In order to highlight the line of reasoning we use in the proof of Theorem 1.1,
and for the sake of completeness, let us first give a short proof of Theorem 1.4(a).

Proof of Theorem 1.4(a). Fix p1 and p2 ∈ 2N∗. We want to prove that if (X1, X2)
is a centered real Gaussian vector then E[Xp1

1 Xp2

2 ] ≥ E[Xp1

1 ]E[Xp2

2 ], with equality
if and only if X1 and X2 are independent. By homogeneity it is enough to prove the
statement when X1 and X2 are normalized, in which case the term on the right-
hand side of the inequality depends only on p1 and p2. Setting, for t in [−1, 1],
Φ(t) = E[Xp1

1 Xp2

2 ] where (X1, X2) is the Gaussian vector associated to

Σ =

(
1 t
t 1

)
,

the claim is equivalent to the fact that Φ reaches its unique minimum at t = 0. From
(3), Φ′(t) = p1p2 E[X

p1−1
1 Xp2−1

2 ] and Φ′′(t) = p1(p1 − 1)p2(p2 − 1)E[Xp1−2
1 Xp2−2

2 ].
In particular, Φ′′ > 0 and Φ′(0) = 0. Consequently, 0 is a critical point of a strictly
convex function, and thus it is the unique global minimizer of Φ, from which the
result follows. �

Theorem 1.1 follows from the recursive argument below; the corresponding ini-
tialization is given by Theorem 1.4(a).

Proposition 2.2. For all p1, p2, and p3 ∈ 2N∗,

GPI3(p1 − 2, p2, p3) ⇒ GPI3(p1, p2, p3).

Proof. Let C be the set of real symmetric positive matrices of size 3 with 1 on the
diagonal, namely

C =

⎧⎨⎩Σ =

⎛⎝1 a b
a 1 c
c b 1

⎞⎠ : |a|, |b|, |c| ≤ 1, det(Σ) ≥ 0

⎫⎬⎭.

We identify C with a compact subset of R3. With this notation, GPI3(p1, p2, p3)
turns out to be equivalent to the fact that Φ attains its unique minimum on C at
I3. Since C is compact and Φ continuous, Φ has a global minimum at some possibly
non-unique

Σ0 =

⎛⎝1 a b
a 1 c
b c 1

⎞⎠ ∈ C.

We prove that Σ0 = I3. We split the argument in three cases, depending on the
location of Σ0 in C.

Case 1. We assume that Σ0 is in the interior on C. This means that det(Σ0) > 0
and |a|, |b|, |c| < 1. In this case, Σ0 is a critical point of Φ. Write

U = Xp1−1
1 Xp2−1

2 Xp3−1
3 .
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According to (3)

(4)

⎧⎪⎨⎪⎩
∂aΦ(Σ0) = p1p2 E[X3U ],

∂bΦ(Σ0) = p1p3 E[X2U ],

∂cΦ(Σ0) = p2p3 E[X1U ].

Thus, E[X1U ] = E[X2U ] = E[X3U ] = 0. On the other hand, let

V = Xp1−1
1 Xp2

2 Xp3

3 .

Thus, by (2) and the fact that the derivatives vanish,

Φ(Σ0) = E[X1V ]

= (p1 − 1)E[Xp1−2
1 Xp2

2 Xp3

3 ] + p2aE[X3U ] + p3bE[X2U ]

= (p1 − 1)E[Xp1−2
1 Xp2

2 Xp3

3 ].

In view of GPI3(p1 − 2, p2, p3), we thus get

Φ(Σ0) ≥ (p1 − 1)E[Xp1−2
1 ]E[Xp2

2 ]E[Xp3

3 ] = E[Xp1

1 ]E[Xp2

2 ]E[Xp3

3 ] = Φ(I3).

Since Σ0 is a minimizer, we actually have that Φ(Σ0) = Φ(I3). In particular, this
means that we are in the equality case of GPI3(p1−2, p2, p3). If p1 > 2, this shows
immediately that Σ0 = I3. Similarly, if p2 > 2 or p3 > 2, we conclude in the same
way. If p1 = p2 = p3 = 2, using Theorem 1.4(a), we deduce that the components of
(X1, X2, X3) are pairwise independent. Since the vector is Gaussian, the conclusion
follows.

Case 2. We assume that |a|, |b|, |c| < 1 and det(Σ0) = 0.
Σ0 is a priori not a critical point of Φ. Since Σ0 is a global minimizer on C it is

also a minimizer of Φ on the surface

S =

⎧⎨⎩Σ =

⎛⎝1 a b
a 1 c
b c 1

⎞⎠ : det(Σ) = 0

⎫⎬⎭.

By the Lagrange multiplier theorem, we conclude that �∇Φ(Σ0) and �∇(det)(Σ0) are

colinear (where �∇ = ( ∂
∂a ,

∂
∂b ,

∂
∂c )). We have already computed �∇Φ(Σ0) in (4), and

we have:

Lemma 2.3. �∇(det)(Σ0) = (α1α2, α1α3, α2α3), where (α1, α2, α3) is some non-
zero vector of ker(Σ0).

Proof. Write A = 2adj(Σ0) where adj stands for the adjugate matrix. Since
det(Σ0) = 0, rank(Σ0) ≤ 2, and since |a|, |b|, |c| < 1, two columns of Σ0 can-
not be proportional so rank(Σ0) = 2. This implies that A has rank 1, thus
A = αTα where α = (α1, α2, α3) ∈ ker(Σ0) \ {0}. By Jacobi’s formula, we have

that �∇(det)(Σ0) = (A1,2, A1,3, A2,3). �

We deduce that there exists a real number k such that

(5)

⎧⎪⎨⎪⎩
∂aΦ(Σ0) = kα1α2,

∂bΦ(Σ0) = kα1α3,

∂cΦ(Σ0) = kα2α3.
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Since (α1, α2, α3) belongs to ker(Σ0), α1X1 + α2X2 + α3X3 = 0 almost surely.
From (4),

0 = p1p2p3 E[U(α1X1 + α2X2 + α3X3)]

= p1α1
∂Φ

∂c
(Σ0) + p2α2

∂Φ

∂b
(Σ0) + p3α3

∂Φ

∂a
(Σ0).

Thus by reporting in (5),

0 = (p1 + p2 + p3)kα1α2α3.

If k = 0, then (5) gives that Σ0 is a critical point of Φ, and as in Case 1 we obtain
that Σ0 = I3, which contradicts det(Σ0) = 0. If one of the αi is zero, say α1, then
α2X2 + α3X3 = 0, so X3 and X2 are proportional, and since they are normalized,
X3 = ±X2, which contradicts |c| < 1. Hence, Case 2 cannot happen.

Case 3. We assume that {|a|, |b|, |c|}∩{1} �= ∅. Say for example that |c| = 1. That
implies that X3 = ±X2 and so by the two dimensional case Theorem 1.4(a),

Φ(Σ0) = E[X1
p1X2

p2+p3 ]

≥ E[X1
p1 ]E[X2

p2+p3 ]

> E[X1
p1 ]E[X2

p2 ]E[X2
p3 ] = Φ(I3).

In particular Σ0 is not a minimizer. It is a contradiction, and Case 3 cannot either
happen.

Conclusion. We obtain that the only minimizer of Φ is I3 which concludes the
proof. �

Remark 2.4 (Discussion on possible extensions to higher dimension). Our method
could theoretically be applied to higher dimension. However, this extension presents
additional difficulties that would require novel ideas that are outside of the scope
of this short note. Let us briefly mention the main difficulty. For an arbitrary
n ∈ N, the boundary of set C is a union of hypersurfaces (Sk)1≤k<n of covariance
matrices of rank k. On Sn−1, equations similar to (4) and (5) can be derived when
considering a Gaussian vector of size n ∈ N. However, the equations one obtains in
this case are of degree n − 2 in the Xi’s and we do not know how to exploit them
in order to derive meaningful conditions on the αi’s or on the Lagrange multiplier.
For 1 < k < n − 1, on Sk the Lagrange multipliers theorem would take an even
more complicated form.
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