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1. Introduction

In this paper, we establish new transport-entropy inequalities for various random point 
measures including the important case of Poisson random measures.

The investigation of transport-entropy inequalities starts in the nineties with works by 
Marton [30,29] and by Talagrand [44], in connection with the concentration of measure 
phenomenon for product measures. We refer to [26, Chapter 6], [45, Chapter 22], [6, 
Chapter 9], and [19,18] for general introductions and surveys on these intimately related 
topics. In this field, the so-called Talagrand’s transport inequality and Marton’s universal 
transport inequality, that we now briefly present, are of prime importance.

In order to state these inequalities, we introduce some notations. Suppose that (Z, d)
is some complete separable metric space, and denote by P(Z) the set of Borel probability 
measures on Z. For k ≥ 1, the Monge-Kantorovich distance Wk (also called Wasserstein 
distance) between ν1, ν2 ∈ P(Z) is defined by

Wk
k (ν1, ν2) = inf E

[
dk(X1, X2)

]
, (1.1)
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where the infimum runs over the set of all pairs (X1, X2) of random variables such that 
X1 ∼ ν1 and X2 ∼ ν2. The relative entropy H of ν1 with respect to ν2 is defined by

H(ν1|ν2) =
ˆ

log dν1

dν2
dν1, (1.2)

if ν1 � ν2, and +∞ otherwise.
We say that a probability measure μ ∈ P(Z) satisfies Talagrand’s transport inequality1

with constant a > 0 if, for all ν1, ν2 ∈ P(Z), it holds

W2
2 (ν1, ν2) ≤ a [H(ν1|μ) + H(ν2|μ)] . (1.3)

This inequality, first proved for the standard Gaussian measures in [44], now plays a 
central role in the literature devoted to concentration of measure, coercive inequalities for 
Markov semigroups (logarithmic Sobolev and Poincaré inequalities, and their offshoots) 
[32,8], and curvature-dimension conditions for weighted Riemannian manifolds or, more 
generally, metric measured spaces [41,42,27]. Various sufficient conditions are available 
to ensure that a given probability measure satisfies (1.3) (see [19] for an overview and 
[17] for a necessary and sufficient condition when Z = R). Dimension free concentration 
of measure is the main application of Talagrand’s inequality (and of its variants): if a 
probability measure μ satisfies (1.3), then, for any n ≥ 1, and for any vector (X1, . . . , Xn)
of i.i.d random variables with common law μ, it holds

P (f(X1, . . . , Xn) ≥ t) ≤ e− t2
2a , ∀t ≥ 0, (1.4)

for every function f : Zn → R which is of mean 0 with respect to μ⊗n and 1-Lipschitz 
with respect to the �2 product distance on Zn,

d2(x, y) =
(

n∑
i=1

d2(xi, yi)
)1/2

, x, y ∈ Zn. (1.5)

We refer to [19] for a presentation of the nice general argument due to Marton that 
enables to deduce (1.4) from (1.3). Remarkably, all the deviation inequalities in (1.4)
hold simultaneously with the same constant a for all dimensions n ≥ 1 (a property which 
actually characterizes Talagrand’s inequality [16]). This type of dimension free bounds 
plays an important role in analysis, probability, or statistics in high dimensions [43,26].

Marton’s inequality involves a variant of the Monge-Kantorovich costs, which we 
denote by M in the sequel and we define as follows:

M2(ν1|ν2) = inf E
[
P (X1 
= X2|X2)2

]
, (1.6)

1 Here, to be precise, we refer to a symmetric version of Talagrand’s inequality, involving two probability 
measures ν1, ν2.
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where the infimum runs over the set of all pairs (X1, X2) of random variables such that 
X1 ∼ ν1 and X2 ∼ ν2. We refer to Section 2.2 for the presentation of the unifying 
framework of generalized transport costs introduced in [23] which contains in particular 
Monge-Kantorovich as well as Marton transport costs. Marton’s transport cost also ad-
mits the following explicit expression: if ν1 and ν2 are absolutely continuous with respect 
to some measure μ on Z, with ν1 = f1μ and ν2 = f2μ, then the results of [30] imply that

M2(ν1|ν2) =
ˆ [

1 − f1

f2

]2

+
f2 dμ. (1.7)

Contrary to Talagrand’s inequality, which holds only for some specific probability mea-
sures, according to [30], all probability measures satisfy Marton’s inequality. A classical 
version of Marton’s universal transport inequality reads as follows: for any probability 
measure μ on Z, it holds that

M2(ν1|ν2) ≤ 4H(ν1|μ) + 4H(ν2|μ), (1.8)

for all ν1, ν2 ∈ P(Z). One can understand this inequality as a reinforcement of the 
classical Csiszar-Kullback-Pinsker inequality (see, for instance, [19] and the references 
therein) comparing the squared total variation distance to relative entropy. We refer to 
[13,36,37] for subsequent refinements of Marton’s inequality. Similarly to (1.3), Marton’s 
inequality has interesting consequences in terms of concentration of measure. As Mar-
ton [30] shows, (1.8) gives back the universal concentration of measure inequalities for 
product measures involving the so-called “convex distance” discovered by Talagrand in 
[43]. To avoid entering into too technical details in this introduction, let us recall a more 
concrete consequence of (1.8) in terms of deviation inequalities for convex functions (see 
[30,13] for details). Namely, if we equip Z = Rp with the standard Euclidean norm and 
μ ∈ P(Rp) has a bounded support with diameter D, then for any n ≥ 1, and for any 
vector (X1, . . . , Xn) of i.i.d random variables with common law μ, we have that

P (f(X1, . . . , Xn) ≥ t) ≤ e−t2/4D2
, ∀t ≥ 0, (1.9)

for all convex or concave function f : (Rp)n → R which is of mean 0 with respect to μ⊗n

and 1-Lipschitz with respect to the Euclidean norm on (Rp)n.
Transport-entropy inequalities share a pivotal tensorization mechanism; this mech-

anism enables one to recover the dimension-free deviation bounds (1.4) or (1.9) from
(1.3) or (1.8). For instance, if μ satisfies Talagrand’s inequality on a space (Z, d) with 
a constant a, then its tensor product μ⊗n also satisfies Talagrand’s inequality on the 
space (Zn, d2) with d2 given by (1.5) and with the same constant a. This tensorization 
property, which comes from classical disintegration formulas for the functionals W2

2 and 
H, is explained in full generality, for instance in [19]. In this work, we use this stability by 
tensorization as a pervasive tool to obtain transport type inequalities for random point 
measures.
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Let us now give a flavor of the content of this paper. In brief, understanding what 
happens to Talagrand’s and Marton’s transport inequalities in the framework of random 
point processes serves as the basic motivation behind this work. More precisely, in this 
article, we consider a particular class of point processes called mixed binomial point 
processes; they are of the following form:

η =
N∑
i=1

δXi
, (1.10)

where N is a random variable taking values in N := {0, 1, 2, . . .}, (Xi)i≥1 is a sequence 
of i.i.d random variables with values in Z independent of N , and δu is the Dirac mass at 
u ∈ Z. In the definition above, and everywhere in the rest of this work, by convention, 
an empty sum is equal to zero. This random point process η takes values in the set 
of all Borel finite measures on Z, written Mb(Z) throughout the paper. We usually 
denote by κ ∈ P(N) the law of N , and by μ ∈ P(Z) the common law of the Xi’s, 
which we often refer to as the “sampling measure” of the process η. We denote the law 
of η by Bμ,κ ∈ P(Mb(Z)). Notably, when N is a Poisson random variable with mean 
λ ≥ 0, the point process η is a Poisson point process, with (finite) intensity measure 
Eη = ν = λμ ∈ Mb(Z). We also denote by Πν ∈ P(Mb(Z)) the law of such a Poisson 
point process. We can also consider Poisson point processes with a σ-finite intensity 
measure; for the sake of simplicity, in this introduction, we only consider the finite 
intensity case. We refer to Section 3.1 for further information and definitions on these 
elementary random point processes.

In this work, we highlight a general principle leading to transport-entropy inequalities 
for point processes: Bμ,κ inherits the transport inequalities satisfied by its sampling 
probability measure μ. To state a first representative result illustrating this general rule, 
let us introduce some notations. Given ν1, ν2 ∈ Mb(Z), we extend the definition given in
(1.1):

W2
2 (ν1, ν2) =

⎧⎪⎪⎨⎪⎪⎩
mW2

2
(
ν1
m , ν2

m

)
, if ν1(Z) = ν2(Z) = m > 0;

0, if ν1(Z) = ν2(Z) = 0;
+∞, if ν1(Z) 
= ν2(Z).

(1.11)

Then, we define a process level Monge-Kantorovich cost W 2
2 on P(Mb(Z)) as follows: 

for any Π1, Π2 ∈ P(Mb(Z)),

W 2
2 (Π1,Π2) = inf E

[
W2

2 (η1, η2)
]
,

where the infimum runs over the set of couples (η1, η2) of random measures such that 
η1 ∼ Π1 and η2 ∼ Π2. The condition W 2

2 (Π1, Π2) < +∞ is a strong assumption. Indeed, 
if it holds then there exists a couple (η1, η2), such that η1 ∼ Π1 and η2 ∼ Π2, and such 
that η1(Z) = η2(Z) almost surely.
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With these notions at hand, we can now state an analogue of Talagrand’s inequality 
for mixed binomial processes.

Theorem 1.1. Suppose that μ ∈ P(Z) satisfies Talagrand’s inequality (1.3) with a con-
stant a > 0, then for any κ ∈ P(N), the probability measure Bμ,κ ∈ P(Mb(Z)) satisfies 
the following inequality: for all Π1, Π2 ∈ P(Mb(Z)) such that W 2

2 (Π1, Π2) < +∞,

W 2
2 (Π1,Π2) + 2aH(λ|κ) ≤ aH(Π1|Bμ,κ) + aH(Π2|Bμ,κ), (1.12)

where λ ∈ P(R+) is such that for all i ∈ {1, 2}, Πi({η ∈ M(Z) : η(Z) ∈ A}) = λ(A), 
for all Borel A ⊂ R+.

This result is another instance of a phenomenon highlighted in a paper by Erbar & 
Huesmann [14]: geometric functional inequalities lift from the base space Z to the space 
of configurations. More precisely, if Z is a Riemannian manifold with Ricci curvature 
bounded by K ∈ R, with infinite volume measure vol, and Riemannian distance d, the 
results of [14] show that

H(Πt|Πvol) ≤ (1 − t)H(Π0|Πvol) + tH(Π1|Πvol) −
K

2 t(1 − t)W 2
2 (Π0,Π1), (1.13)

where Πvol denotes the Poisson point process with intensity measure vol, and where Πt

is any W2-geodesic from Π0 to Π1, for Π0 and Π1 ∈ P(MN̄(Z)) with MN̄(Z) denoting 
the space of measures η such that η(K) ∈ N for all compact K ⊂ Z. This means that the 
curvature property of the metric measured space (Z, d, vol) transfers to the (extended) 
metric measured space (MN̄(Z), W2, Πvol). Indeed, (1.13) states that (MN̄(Z), W2, Πvol)
has a synthetic Ricci curvature in the sense of Lott-Sturm-Villani bounded below by 
K (see, for instance, one of the seminal papers [41,27] for definitions of synthetic Ricci 
lower bound in terms of convexity of the relative entropy, as well as [2, Definition 9.1]
for a definition in the extended metric measured spaces setting). This lifting of Ricci 
lower bound is very natural, if we think of Πvol as the invariant measure of a system 
of non-interacting N Brownian motions on Z, where N has a Poisson law with mean 
vol(M) (possibly infinite). In the case where K > 0, the manifold is compact so that 
Πvol has a representation as a mixed binomial process, and, provided the results of [14]
carry to the compact case, taking t = 1

2 , and using that the entropy is non-negative in
(1.13) immediately yields, for all Π0, Π1 ∈ P(MN̄(M)) such that W 2

2 (Π0, Π1) < ∞:

K

4 W 2
2 (Π0,Π1) ≤ H(Π0|Πvol) + H(Π1|Πvol).

Let us stress that our argument works under the sole assumption that the space Z
supports a Talagrand inequality and is quite elementary. For other aspects of the relation 
between the geometry of Z and the geometric, analytic and probabilistic aspects of 
MN̄(Z) see [1,34,35,12].
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To state an analogue of Marton’s inequality, we introduce the following cost: for any 
Π1, Π2 ∈ P(Mb(Z)),

M2(Π1|Π2) = inf E

⎡⎣ˆ E

[[
1 − η1(x)

η2(x)

]
+

∣∣∣∣∣ η2

]2

η2(dx)

⎤⎦ ,

where ηi(x) is a slight abuse of notation for ηi({x}), and where the infimum runs over 
the set of couples (η1, η2) of random measures such that η1 ∼ Π1 and η2 ∼ Π2.

Theorem 1.2. For any ν ∈ Mb(Z), the Poisson point process Πν satisfies the following 
inequality: for all Π1, Π2 ∈ P(Mb(Z)),

M2(Π1|Π2) ≤ 4H(Π1|Πν) + 4H(Π2|Πν).

A similar statement actually holds for Poisson point processes associated with a σ-
finite sampling measure ν, see Theorem 3.5 for a precise result.

Let us mention that other authors derived universal transport-entropy inequalities for 
Poisson point processes. For instance, Ma et al. [28] combine arguments of exponential 
integrability of [7] with the modified logarithmic Sobolev inequality for Poisson point 
processes of [46] in order to derive some L1-transportation inequalities for Poisson point 
processes. To state their results, let us define

TTV (Π1,Π2) = inf E‖η1 − η2‖TV ,

where the infimum is over all η1 ∼ Π1 and all η2 ∼ Π2, and ‖ · ‖TV is the total variation 
norm. Assuming, for simplicity, ν(Z) = 1 and choosing φ = 1 in [28, Theorem 2.6] yields

α(TTV (Π,Πν)) ≤ H(Π|Πν), (1.14)

where α(r) = (1 +r) log(1 +r) −r. In order to compare our inequalities in greater details, 
we would need to compare α(TTV ) and M2. However, this does not seem to be possible 
in general. One reason for that is that since the ηi’s are not probability measures, one 
cannot apply Jensen’s inequality.

As mentioned earlier, Marton introduces her inequality so one may derive concentra-
tion of measure with respect to the so-called Talagrand convex distance. In the setting of 
Poisson point processes, [33] uses the Talagrand convex distance to prove concentration 
of measure results for Poisson random measures. In Section 4, we recover, in the spirit of 
Marton’s work, the results of [33] using Theorem 1.2. Building on the ideas of [9], [3] con-
siders a different approach towards concentration of measure for Poisson point processes. 
They obtain various general conditions on a functional F : Mb(Z) → R under which the 
random variable F (η) satisfies some deviation inequality. Since the space Mb(Z) does 
not come with a natural distance, a rather involved technical condition replaces the con-
dition of being Lipschitz that appeared in (1.4). However, [3,4] shows that the so-called 
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geometric U -statistics always satisfy this condition, and hence always satisfy some con-
centration of measure estimate. Based on Theorem 1.2, we recover a deviation inequality 
for U -statistics in the spirit of [3,4] with a simple argument. It would be interesting to 
know whether we could recover the main result of [3] for generic functionals from our 
transport inequality. This question will be examined elsewhere.

Theorems 1.1 and 1.2 are consequences of more general results presented in Sec-
tions 3.2 and 3.3. As already mentioned above, the tensorization property of the transport 
inequality satisfied by the sampling measure on the base space is crucial in our analysis. 
Heuristically, this dimension free structure matters, since a random point process η as 
in (1.10) can be seen as a random vector of random dimension (up to the permutation 
of its coordinates). It should be noted that in the work [14] on Ricci curvature bounds 
on the configuration space, even if the arguments are different, tensorization properties 
also play a pivotal role (in that case the tensorization of the Bakry-Emery condition).

The paper is organized as follows. Section 2 contains generalities about spaces of 
measure, optimal transport and functional inequalities. Section 2.1 recalls some basic 
facts about the weak topology of the space of measures over a Polish space. Sections 2.2
and 2.3 present, in a self-contained way, the structural properties of the generalized op-
timal transport and the related transport-entropy inequalities introduced by [23], and 
the subsequent results of [5]. This framework encompasses, as a particular case, Tala-
grand and Marton inequalities. In Section 2.4, we recall two further stability properties 
of transport-entropy inequalities: stability by tensorization (as already explained this 
property is at the heart of our argument), stability by push-forward, and stability by 
approximation. Section 3 is the core of this article and contains our main results that are 
Theorems 3.1, 3.3 and 3.5. We start, in Section 3.1, with some reminders on binomial 
point processes and Poisson point processes. In Section 3.2, we prove Theorem 3.1, that 
states that a Talagrand inequality for μ implies a Talagrand-type inequality for Bμ,κ, 
and that implies Theorem 1.1. We first show our result for the simple case of binomial 
processes of deterministic size, and then extend it to random size using some properties 
of optimal transport and relative entropy under conditioning. Section 3.3 contains sev-
eral results about Marton-type transport-entropy inequalities on the configuration space. 
Our first result in that direction is Theorem 3.3, that states that a Marton inequality for 
μ implies a transport-entropy inequality for binomial process of deterministic size. Since, 
for a properly chosen distance, all probability measures satisfy a Marton inequality, this 
produces Corollary 3.4 stating a universal Marton inequality for binomial process of fixed 
size. Contrary to the case of Talagrand inequality, we cannot extend our results to mixed 
binomial processes of arbitrary random size. In Theorem 3.5, we extend Corollary 3.4
to Poisson point processes with σ-finite intensity measure using a strong approximation 
of the Poisson point process by thinning a binomial process. This result implies Theo-
rem 1.2. In Section 4, we study the consequences of our transport-entropy inequalities in 
terms of concentration of measure. In Section 4.1, we explain how to recover the main 
findings of [33] from Theorem 3.5. In Section 4.2, we also discuss concentration of mea-
sure for a particular class of functionals, containing in particular geometric U -statistics, 
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and extend some results of [3,4] to this class of functionals. Finally, in Section 5 we 
discuss the consequences of Theorem 3.3 in terms of modified logarithmic Sobolev in-
equality. Following [23], Theorem 5.1 is a general modified logarithmic Sobolev inequality 
on the Poisson space where the energy term is given in term of an infimum-convolution 
operator. Corollary 5.2 shows how we can partially deduce from this general modified 
logarithmic Sobolev inequality the modified logarithmic Sobolev inequality of [46] for 
monotonic functionals.
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2. Preliminaries on measures and optimal transport

In what follows, (E, d) is a complete and separable metric space. We recall below basic 
topological properties of some sets of measures on E, then we introduce the framework 
and the basic properties of (generalized) optimal transport costs between two measures 
on E and finally, we recall definitions and basic properties of transport-entropy inequali-
ties. In the subsequent sections, we apply the material of the present section with E = Z, 
Z being the state space of our point process, or with E = Mb(Z).

2.1. Topology of spaces of measures

We always regard the space E as a measurable space equipped with its Borel σ-algebra 
B(E). We recall that we denote by Mb(E) the space of finite measures and by P(E)
the set of probability measures on E. We also write M0(E) for the space of Radon 
measures that are finite on balls. We write Cb(E) for the space of bounded continuous 
functions, and C0(E) for the space of continuous functions vanishing outside of a ball. 
We endow the sets Mb(E) and P(E) with the weak topology that is generated by the 
maps f∗ : ν →

´
f dν with f ∈ Cb(E). On the other hand, we endow the space M0(E)

with the vague topology that is generated by the f∗ with f ∈ C0(E). According to [24, 
Section 4.1], Mb(E) and P(E) (with the weak topology), and M0(E) (with the vague 
topology) are Polish spaces (complete, separable, and metrizable). We often work with 
the following subset of Mb(E):
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MN(E) =
{

k∑
i=1

δai
: k ∈ N, a1, . . . , ak ∈ E

}
(2.1)

corresponding to finite configurations over E. We also work with MN̄(E) consisting of 
all ξ ∈ M0(E) such that, for every closed ball B ⊂ E, ξ�B ∈ MN(B). The spaces MN(E)
or MN̄(E) are the natural state space of our point processes.

Lemma 2.1. The set MN(E), resp. MN̄(E), is a closed subset of Mb(E), resp. M0(E). 
In particular, MN(E) and MN̄(E) are a Polish spaces.

Proof. Let {ξn : n ∈ N} ⊂ MN(E) converging to some ξ ∈ Mb(E). Let us show that 
ξ belongs to MN(E). Since ξn(E) is a sequence of integers converging to ξ(E), it must 
be that k := ξ(E) ∈ N and that ξn(E) = k for all n sufficiently large. Then, since 
(ξn)n≥0 is converging, it is according to Prohorov’s theorem a tight sequence: for any 
ε > 0, there exists a compact set Kε ⊂ E such that supn≥0 ξn(E \ Kε) ≤ ε. Taking 
in particular ε = 1/2 and using the fact that the ξn’s are sums of Dirac masses, one 
sees that ξn(E \ K1/2) = 0. In other words, for all n large enough ξn =

∑k
i=1 δxn

i
, 

with xn
1 , . . . , x

n
k ∈ K1/2. Using a diagonal extraction argument, one can assume without 

loss of generality that xn
i → xi ∈ K1/2 for all i ∈ {1, . . . , k}. This easily implies that 

ξ =
∑k

i=1 δxi
and so ξ ∈ MN(E). Now let {ξn : n ∈ N} ⊂ MN̄(E) converging to some 

ξ ∈ M0(E). By what precedes for every ball B ⊂ E, there exists ξB ∈ MN(E) such that

ξn�B
weakly−−−−→
n→∞

ξB .

By a compatibility argument, we have that ξ�B = ξB ; hence ξ ∈ MN̄(E). As closed 
subsets of a Polish spaces, MN(E) and MN̄(E) are themselves Polish. �
2.2. Optimal transport between measures of arbitrary masses

2.2.1. Couplings, transport costs and generalized transport costs
A coupling of ν1 and ν2 ∈ M0(E) is an element N ∈ M0(E × E) such that, for all 

A ∈ B(E), N(A × E) = ν1(A) and N(E ×A) = ν2(A). Observe that if ν1, ν2 ∈ Mb(E), 
then N ∈ Mb(E×E). Imposing ν1(E) = ν2(E) is a necessary and sufficient condition for 
the existence of a coupling between ν1 and ν2. Indeed, if there exists a coupling N of ν1
and ν2 then ν1(E) = N(E×E) = ν2(E). On the other hand, if ν1 and ν2 ∈ M0(E) with 
ν1(E) = ν2(E) = n ∈ N ∪ {∞}, then we can write ν1 =

∑n
q=1 ν1,q and ν2 =

∑n
q=1 ν2,q

with νi,q ∈ P(E). Then N =
∑n

q=1(ν1,q ⊗ ν2,q) is a coupling of ν1 and ν2. According 
to [10, Proposition 13, Section 2.7], for every coupling N , there exists a measurable 
application E � x → px ∈ P(E) such that for all A and B ∈ B(E):

N(A×B) =
ˆ

px(B)ν1(dx). (2.2)

A
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We call p = {px : x ∈ E} the disintegration kernel of N along ν1. For short, we often 
abbreviate

N(dxdy) = px(dy)ν1(dx).

Following [23], given a bi-measurable cost function c : E ×P(E) → [0, ∞], the (gen-
eralized) optimal transport cost associated to c from ν1 to ν2 ∈ M0(E), denoted by 
Tc(ν2|ν1), is given by

Tc(ν2|ν1) = inf
ˆ

c(x, px) ν1(dx), (2.3)

where the infimum runs over all couplings N(dxdy) = px(dy)ν1(dx) between ν1 and ν2. 
We use here the convention that inf ∅ = ∞. In particular, we have Tc(ν2|ν1) = ∞ as 
soon as ν1(E) 
= ν2(E). We always implicitly assume that the bi-measurability of c is 
satisfied in the rest of the document. Note that, Tc is, in general, not symmetric with 
respect to ν1 and ν2. When c is of the form

c(x, p) =
ˆ

ω(x, y)p(dy), (2.4)

for some ω : E × E → [0, ∞], we say, with a slight abuse of language, that c is linear, 
and we set Tω = Tc. The cost Tω is the transportation cost associated to ω in the usual 
sense of optimal transport:

Tω(ν2|ν1) = inf
ˆ

ω(x, y)N(dxdy), (2.5)

where the infimum is running over all couplings N of ν1 and ν2. Such objects have been 
intensively studied and play an important role in many different areas of mathematics. 
The reader can look at the reference [45] and the references therein.

2.2.2. Some examples
Let us recall some classical choices for transport costs.

Monge-Kantorovich distance Choosing ω = dk with k ≥ 1 yields Tdk = Wk
k , the Monge-

Kantorovich transport cost already introduced in (1.1) and (1.11).

Marton-type transport distances Given a measurable function ρ : E × E → [0, ∞] and 
a convex function α : R+ → R+, we introduce the Marton type cost function

c(x, p) = α

(ˆ
ρ(x, y)p(dy)

)
, x ∈ E, p ∈ P(E), (2.6)
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and, following the notations of [23], we denote by T̃α,ρ the associated optimal transport 
cost, namely

Tα,ρ(ν2|ν1) = inf
ˆ

α

(ˆ
ρ(x, y)px(dy)

)
ν1(dx),

where the infimum runs over all couplings N(dxdy) = px(dy)ν1(dx). When ν1, ν2 ∈
P(E), we can also write

T̃α,ρ(ν2|ν1) = inf E [α (E [ρ(X1, X2)|X1])] , (2.7)

where the infimum runs over the couples (X1, X2) with X1 ∼ ν1 and X2 ∼ ν2. In 
particular, taking the Hamming distance ρ(x, y) = 1x�=y and α(x) = x2, x ≥ 0, gives 
back Marton’s cost M2 already introduced in (1.6) and (1.7).

The costs Wp are symmetric since d is symmetric. More generally Tω is symmetric 
provided ω is symmetric. On the other hand T̃α,ρ is, in general, not symmetric even when 
ρ is symmetric.

Applying Jensen’s inequality in (2.6), we easily check that, for all ν1, ν2 ∈ Mb(E),

T̃α,ρ(ν2|ν1) ≤ Tα◦ρ(ν1, ν2); (2.8)

moreover, if ν1, ν2 ∈ P(E) using Jensen’s inequality in the integral with respect to ν1 in 
the definition of T̃α,ρ shows that:

α (Tρ(ν2|ν1)) ≤ T̃α,ρ(ν2|ν1). (2.9)

Choosing the Hamming distance ρ(x, y) = dH(x, y) = 1x�=y, x, y ∈ E, we have for any 
ν1, ν2 ∈ P(E):

TdH
(ν2|ν1) = Td2

H
(ν2|ν1) = inf

X1∼ν1,X2∼ν2
P (X1 
= X2) = ‖ν1 − ν2‖TV ,

where ‖ · ‖TV is the classical total variation norm. In this case, (2.8) and (2.9) yield

‖ν2 − ν1‖2
TV ≤ M2(ν2|ν1) ≤ ‖ν2 − ν1‖TV .

2.2.3. Existence of optimal couplings, lower semicontinuity of transport costs and 
stability of optimal couplings

Backhoff-Veraguas et al. [5] prove the following result (the authors work with ν1, 
ν2 ∈ P(E) but the generalization to Mb(E) presents no difficulty).

Theorem 2.2. Let c : E ×P(E) → [0, ∞] be convex in its second argument, and jointly 
lower semi-continuous, then, for all ν1 and ν2 ∈ Mb(E) with same total mass, there 
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exists a coupling N(dxdy) = px(dy)ν1(dx) of ν1 and ν2 with disintegration kernel p such 
that

Tc(ν2|ν1) =
ˆ

c(x, px)ν1(dx). (2.10)

Proof. Let m = ν1(E) = ν2(E) be the common mass of the measures. If m = 0, then 
ν1 = ν2 = 0 and Tc(ν2|ν1) = 0 and the coupling N = 0 is optimal. Now, assume that 
m > 0. Since Tc(ν2|ν1) = mTc(ν2/m|ν1/m), we use [5, Theorem 1.1] to conclude. �

Rather classically, this yields lower semi-continuity of Tc as shown in [5]. Below we 
simply adapt the argument to finite measures of arbitrary total mass.

Theorem 2.3. Let c : E × P(E) → [0, ∞] be jointly lower semi-continuous, and convex 
in its second argument, then Tc : Mb(E) ×Mb(E) → [0, ∞] is lower semi-continuous.

Proof. Let (μk)k≥0 and (νk)k≥0 respectively weakly converging to μ and ν in Mb(E). 
Let us show that

lim inf
k→+∞

Tc(μk|νk) ≥ Tc(μ|ν). (2.11)

By definition of the weak convergence, we have μk(E) → μ(E) and νk(E) → ν(E). If 
μ(E) 
= ν(E), then for all k sufficiently large, it holds μk(E) 
= νk(E) and so Tc(μk|νk) =
+∞. Thus (2.11) holds in this case. If μ(E) = ν(E) = 0, then Tc(μ|ν) = 0 and (2.11)
trivially holds. Let us now assume that μ(E) = ν(E) = m > 0. Extracting a subsequence 
if necessary, one can assume that μk(E) = νk(E) = mk > 0 for all k ≥ 0. Since 
Tc(μk|νk) = mkTc(μk/mk|νk/mk) and using [5, Theorem 2.9], we see that

lim inf
k→+∞

Tc(μk|νk) = lim inf
k→+∞

mkTc(μk/mk|νk/mk) ≥ mTc(μ/m|ν/m) = Tc(μ|ν),

which completes the proof. �
When c is only lower semi-continuous but not convex, we do not know if Tc : M0(E) ×

M0(E) → [0, ∞] is lower semi-continuous.
Finally, let us recall the following stability result taken from [45, Theorem 4.6].

Theorem 2.4. Let ω : E × E → [0, ∞] be a lower semi-continuous cost function. Let 
μ, ν ∈ P(E) be such that Tω(μ, ν) < ∞ and let N be an optimal transport plan. Let 
Ñ ∈ Mb(E ×E) such that Ñ ≤ N and Ñ 
= 0, then the probability measure

N ′ = Ñ

Ñ(E ×E)
, (2.12)

is an optimal transport plan between its marginals.
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2.2.4. Optimal (partial) transport between configurations
In this section, we study in more details Tc(χ|ξ), in the case where ξ, χ ∈ MN̄(E) are 

configurations.

Proposition 2.5. Let ω : E × E → [0, ∞] be lower semi-continuous. Let ξ, χ ∈ MN(E)
such that ξ =

∑k
i=1 δai

and χ =
∑k

i=1 δbi for some k ≥ 1 and a1, . . . , ak, b1, . . . , bk ∈ E. 
Then,

Tω(χ|ξ) = inf
{

k∑
i=1

ω(ai, bσ(i))
}
, (2.13)

where the infimum runs over the set of all permutations σ of {1, . . . , k}.

This result is very classical (but usually stated for pairwise distinct ai’s or bj ’s); we 
include a proof for completeness.

Proof. The inequality ≤ is clear, since for any permutation σ, the measure N =∑n
i=1 δ(ai,bσ(i)) is a coupling between ξ and χ. To prove the converse, let us consider 

a coupling N between ξ and χ and define the matrix M = [Mi,j ]1≤i,j≤k as follows:

Mi,j = N({ai} × {bj})
μ(ai)ν(bj)

, ∀1 ≤ i, j ≤ k.

The matrix M is bi-stochastic, since denoting by S = {b1, . . . , bk} the support of χ,

k∑
j=1

Mi,j = 1
ξ(ai)

k∑
j=1

N({ai} × {bj})
χ(bj)

= 1
ξ(ai)

ˆ

S

N({ai} × {y})
χ(y) χ(dy)

= 1
ξ(ai)

∑
y∈S

N({ai} × {y}) = 1

and similarly, 
∑k

i=1 Mi,j = 1. Since 
´
ω(x, y) N(dxdy) =

∑
i,j ω(xi, yi)Mi,j , the other 

inequality follows from Birkhoff Theorem on extremal points of doubly stochastic ma-
trices. �

Even when c is bounded, the cost Tc is infinite as soon as the measures are of different 
total masses. One way to avoid this, is to work with partial optimal transport that we 
now define. For ξ, χ ∈ MN(E), we define

Tc,0(χ|ξ) =
{

min {Tc(χ|ξ′) : ξ′ ∈ MN(E), ξ′ ≤ ξ, ξ′(Z) = χ(Z)} , if ξ(Z) ≥ χ(Z);
min {Tc(χ′|ξ) : χ′ ∈ MN(E), χ′ ≤ χ, χ′(Z) = ξ(Z)} , if ξ(Z) < χ(Z).

(2.14)
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Here and in the rest of this paper, the notation ν′ ≤ ν, for ν and ν′ ∈ M0(E), means 
that ν′(A) ≤ ν(A) for every Borel set A. The following result follows immediately from 
Proposition 2.5.

Proposition 2.6. Let ξ, χ ∈ MN(E) be such that ξ =
∑n

i=1 δai
and χ =

∑k
i=1 δbi , for 

some k, n ≥ 1 and a1, . . . , an, b1, . . . , bk ∈ E. Assume n ≥ k then

Tω,0(ξ, χ) = inf
{

k∑
i=1

ω(xi, yi) :
k∑

i=1
δxi

≤ ξ, χ =
k∑

i=1
δyi

}
. (2.15)

2.3. Transport-entropy inequalities

2.3.1. Definitions and examples
Recall the definition of the relative entropy functional H given in (1.2). Given a cost 

function c : E × P(E) → [0, ∞], we say that a probability measure γ ∈ P(E) satisfies 
the transport-entropy inequality (Tc) with constants a1, a2 > 0 if

Tc(ν2|ν1) ≤ a1H(ν1|γ) + a2H(ν2|γ), ∀ν1, ν2 ∈ P(E). (Tc)

When c(x, p) =
´
ω(x, y)p(dy), for ω : E × E → [0, ∞] we use (Tω) to designate the 

corresponding transport-entropy inequality, which reads as follows

Tω(ν1, ν2) ≤ a1H(ν1|γ) + a2H(ν2|γ), ∀ν1, ν2 ∈ P(E). (Tω)

When c(x, p) = α (
´
ρ(x, y)p(dy)) for some cost function ρ : E × E → [0, ∞] and some 

convex function α as in (2.6) on R+, we say that γ satisfies the inequality (T̃α,ρ) with 
constants a1, a2 > 0 if

T̃α,ρ(ν2|ν1) ≤ a1H(ν1|γ) + a2H(ν2|γ), ∀ν1, ν2 ∈ P(E). (T̃α,ρ)

In these definitions, a1 or a2 can assume the value ∞, and we use the convention that 
0 · ∞ = 0. For instance, if, for instance, a2 = ∞ the previous inequalities are non-trivial 
if and only if we take ν2 = γ. In that case, (T̃α,ρ) is interpreted as

T̃α,ρ(γ|ν1) ≤ a1H(ν1|γ), ∀ν1 ∈ P(E). (T̃α,ρ)

When a1 = a2 = a < ∞, we simply say that γ satisfies a transport-entropy inequality 
with constant a.

We refer to [19,23] for a panorama of cost functions and transport inequalities. We 
refer to inequalities of the form (Tω) as Talagrand type transport-entropy inequalities; 
whereas we use Marton type transport-entropy inequalities for inequalities of the form
(T̃α,ρ).
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Talagrand’s inequality Choosing ω = d2 in (Tω) yields Talagrand’s inequality (1.3).

Marton’s universal transport inequalities Choosing ρ = dH , α(x) = x2, x ≥ 0 and a = 4
in (T̃α,ρ) gives Marton’s inequality (1.8), which holds true for any probability measure 
γ. Actually, Marton’s inequality (1.8) can be slightly improved. Dembo [13] shows that 
any probability measure γ satisfies a family of inequalities (T̃α,ρ) with respect to the 
Hamming distance dH , namely:

T̃αt,dH
(ν2|ν1) ≤

1
t
H(ν1|γ) + 1

1 − t
H(ν2|γ), ∀t ∈ [0, 1];

where

αt(u) = t(1 − u) log(1 − u) − (1 − tu) log(1 − tu)
t(1 − t) , ∀u ∈ [0, 1]. (2.16)

For t = 0 or t = 1, αt is defined by taking the corresponding limit in the definition above, 
namely:

α0(u) = (1 − u) log(1 − u) + u;

α1(u) = −u− log(1 − u).

We easily check that αt(u) ≥ α0(u) ≥ u2

2 , u ∈ [0, 1]. In particular, with t = 1
2 , Dembo’s 

result gives back Marton’s inequality (1.8).

2.4. Stability by tensorization, by push-forward, and by approximation

We now state the three main operations that enable us to obtain transport in-
equalities for mixed binomial processes: the tensorization, push-forward, and strong 
approximations. Importantly for us, transport-entropy inequalities are closed under these 
operations.

Transport-entropy inequalities enjoy the following well known tensorization prop-
erty [23, Theorem 4.11].

Proposition 2.7. Consider, for i = 1, . . . , n, costs functions ci : Ei × P(Ei) → [0, ∞]
for some Polish spaces Ei. Suppose that the functions ci are convex with respect to their 
second variables. If, for all 1 ≤ i ≤ n, γi ∈ P(Ei) satisfies (Tci) with constant a1, a2 > 0, 
then γ1 ⊗ · · · ⊗ γn satisfies (Tc̄) (with the same constant a1, a2) where

c̄(x, p) =
n∑

i=1
ci(xi, pi), (2.17)

where x = (x1, . . . , xn) ∈ E1 × · · · × En and p ∈ P(×Ei) has i-th marginal pi.
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Remark 1. The reference [23] proves the theorem only for the case a1, a2 < ∞ but if 
a1 = 1 (resp. a2 = ∞) their proof still works, replacing ν′ (resp. ν) by μ2.

Now let us turn to the stability by push-forward. Let us fix two Polish spaces X and 
Y , and a measurable map S : X → Y . Recall that for γ ∈ P(X) the push forward of γ
by S is the element of P(Y ) defined by S#γ(A) = γ(S−1A), for all A ∈ B(Y ). Given a 
cost c : X ×P(X) → [0, ∞] we define its push forward by

S#c(y, q) = inf{c(x, p) : S(x) = y, S#p = q}, (2.18)

for all y ∈ Y and q ∈ P(Y ). Likewise, for ω : X ×X → [0, ∞], we write

S#ω(y1, y2) = inf {ω(x1, x2) : S(x1) = y1, S(x2) = y2} , y1, y2 ∈ Y. (2.19)

We now show that the push-forward preserves transport-entropy inequalities.

Proposition 2.8. Suppose that γ ∈ P(X) satisfies (Tc) (with constants a1, a2 > 0) for 
some convex cost function c : X × P(X) → R+. Then, the probability measure S#γ

satisfies (TS#c) with the same constants a1, a2. In particular, if γ satisfies (Tω) for 
some ω : X ×X → [0, ∞], then S#γ satisfies (TS#ω).

This property is rather classical for transport inequalities of the form (Tω); it goes 
back at least to [31] (in the dual language of infimum convolution inequalities). See 
[15,17,23] for applications of this transfer principle. However, at this level of generality, 
Proposition 2.8 is new.

Proof. For short, we write γ̄ = S#γ and c̄ = S#c. Let ν̄1, ̄ν2 ∈ P(Y ) be such that 
H(ν̄1|γ̄) < ∞ and H(ν̄2|γ̄) < ∞. Let h̄1 be the density of ν̄1 with respect to γ̄; then for 
f ∈ Cb(Y )

ˆ
fdν̄1 =

ˆ
fh̄1 dγ̄ =

ˆ
f(S)h̄1(S)dγ =

ˆ
f(S)dν1, (2.20)

where dν1 = h̄1(S)dγ. Therefore, there exists at least one probability measure ν1 on X
such that ν̄1 = S#ν1. On the other hand,

H(ν̄1|γ̄) =
ˆ

h̄1 log h̄1dγ̄ =
ˆ

h̄1(S) log h̄1(S)dγ = H(ν1|γ). (2.21)

Let us consider the function T c( · | · ) : P(X) ×P(X) → [0, ∞] defined by

T c(ν̄1|ν̄2) = inf {Tc(ν1|ν2) : ν̄1 = S#ν1 and ν̄2 = S#ν2} . (2.22)

According to what precedes, for all ν̄i, i = 1, 2, such that H(ν̄i|γ̄) < ∞, there exist νi, 
i = 1, 2, on P(X) such that ν̄i = S#νi and so
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T c(ν̄1|ν̄2) ≤ Tc(ν1|ν2) ≤ a1H(ν1|γ) + a2H(ν2|γ) = a1H(ν̄1|γ̄) + a2H(ν̄2|γ̄). (2.23)

Now let us prove that

T c(ν̄1|ν̄2) ≥ Tc̄(ν̄1|ν̄2). (2.24)

Let ν̄1, ̄ν2 such that H(ν̄i|γ̄) < +∞, i = 1, 2; there exist ν1, ν2 such that ν̄i = S#νi. Let 
p be a kernel such that ν1 = ν2p. Equivalently, there exists a pair of random variables 
(X1, X2) with X2 ∼ ν2 and Law(X1|X2 = x) = px. Consider Y1 = S(X1) and Y2 =
S(X2); for all bounded continuous functions f1, f2 on Y it holds

E[f1(Y1)f2(Y2)] = E[f1(S(X1))f2(S(X2))] = E

[ˆ
f1(S(x1))dpX2(x1)f2(S(X2))

]
= E

[ˆ
f1(y1)d(S#pX2)(y1)f2(S(X2))

]
= E

[
E

[ˆ
f1(y1)d(S#pX2)(y1)|S(X2)

]
f2(S(X2))

]
Consider a regular conditional probability k for Law(X2|Y2); then

E[f1(Y1)f2(Y2)] = E

[ˆ (ˆ
f1(y1)d(S#px2)(y1)

)
kY2(dx2)f2(Y2)

]
=
¨

f1(y1)f2(y2)p̄y2(dy1) ν̄2(dy2),
(2.25)

with

p̄y2 =
ˆ

(S#px2) ky2(dx2). (2.26)

This proves that ν̄2p̄ = ν1.
ˆ

c(x2, px2) ν2(dx2) ≥
ˆ

c̄(S(x2), S#px2) ν2(dx2)

=
¨

c̄(S(x2), S#px2) ky2(dx2)ν̄2(dy2)

=
¨

c̄(y2, S#px2) ky2(dx2)ν̄2(dy2)

≥
ˆ

c̄

(
y2,

ˆ
S#px2 ky2

)
ν̄2(dy2)

≥ Tc̄(ν̄1|ν̄2),

where the first inequality comes from the definition of c̄, the third is a consequence of 
the fact that S(x2) = y2 for ky2 almost all x2, and the fourth follows from the convexity 
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of c̄ (which is itself a simple consequence of the convexity of c). Therefore, taking the 
infimum over p yields to Tc(ν1|ν2) ≥ Tc̄(ν̄1|ν̄2). Taking the infimum over all ν1, ν2 such 
that S#νi = ν̄i finally gives (2.24) and completes the proof. �

In applications, one often approximates a Poisson point process of interest by a simpler 
point process for which one can establish a transport-entropy inequality. The following 
general lemma allows us to transfer a transport-entropy inequality from the simpler 
process to the other process.

Lemma 2.9. Let E be a Polish space and let c : E × P(E) → R+ be a lower semi-
continuous cost. Let {γn : n ∈ N} ∪ {γ} ⊂ P(E) such that for all A ∈ B(E):

γn(A) −−−−→
n→∞

γ(A).

If for all n ∈ N, γn satisfies (Tc) with constants a1,n, a2,n > 0, then γ satisfies (Tc)
with the constants ai = lim infn ai,n, i = 1, 2.

Proof. Thanks to the strong convergence, for any f : E → R bounded and measurable, 
it holds

ˆ

E

f(x)γn(dx) −−−−→
n→∞

ˆ

E

f(x)γ(dx). (2.27)

Take ν1, ν2 ∈ P(E), absolutely continuous with respect to γ with bounded respective 
densities f1 and f2. Let us define for all i = 1, 2 and for all Borel set A ⊂ E,

νin(A) =
´
A
fi(x)γn(dx)´
fi(x)γn(dx)

.

By assumption on γn, we have that

Tc(ν1
n|ν2

n) ≤ a1,nH(ν1
n|γn) + a2,nH(ν2

n|γn). (2.28)

Using (2.27), we see that νin −−−−→
n→∞

νi weakly (and even setwise). Since, by assumption, 
the cost function c is lower semi-continuous, by Theorem 2.3, Tc : P(E) ×P(E) → [0, ∞]
is also lower semi-continuous, and so

lim inf
n→∞

Tc(ν1
n|ν2

n) ≥ Tc(ν1|ν2).

On the other hand, using (2.27), we see that for i = 1, 2

H(νin|γn) = γn(fi log fi) − log γn(fi) −−−−→ γ(fi log fi) = H(νi|γ).

γn(fi) n→∞
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Letting n → ∞ in (2.28) thus completes the proof in the case of bounded densities. The 
general case follows by standard approximations arguments. �
3. Transport inequalities for random point processes

In this section, we establish transport-entropy inequalities for a mixed binomial point 
process of the form (1.10) provided its sampling measure itself satisfies some transport-
entropy inequalities. We essentially base our proofs on the material of Section 2.4. The 
section is organized as follows: first we present some generalities about point processes, 
then we establish transport-entropy inequalities for mixed binomial point processes under 
the assumption that the sampling measure satisfies an inequality of the form (Tω) (a 
case which covers in particular our Theorem 1.1), and finally we consider the case where 
the sampling measure satisfies an inequality of the form (T̃α,ρ) (which includes our 
Theorem 1.2).

3.1. Random point processes

From now on, we fix a complete separable metric space (Z, d) that we regard as our 
reference state space. Recall the notation MN(Z) (resp. MN̄(Z)) introduced in (2.1)
for the space of finite configurations (resp. configurations); equipped with the weak 
(resp. vague) topology (introduced in Section 2.1), MN(Z) (resp. MN̄(Z)) is a Polish 
space according to Lemma 2.1. We always equip the space MN(Z) and MN̄(Z) with 
their Borel σ-field (without further mention). For n ∈ N, we also conveniently write 
Mn(Z) = {ξ ∈ MN(Z) : ξ(Z) = n}. This space is a closed subset of MN(Z) and is 
therefore also Polish when equipped with the weak topology.

A point process (resp. finite point process) on Z is a MN̄(Z)-valued (resp. MN(Z)-
valued) random variable. In this paper, we focus, on the one hand, on mixed binomial 
process defined in (1.10). For reader’s convenience, we recall that this is the class of 
finite point processes of the form η =

∑N
i=1 δXi

where (Xi)i≥1 is an i.i.d sequence of law 
μ ∈ P(Z) independent of the N-valued random variable N whose law is denoted by κ. 
We also recall that the law of η is denoted Bμ,κ. When κ = δn, where n ∈ N, we write 
Bμ,n ∈ P(Mn(Z)) instead of Bμ,δn . A process η ∼ Bμ,n is called a binomial process of 
size n.

On the other hand, we consider the important class of Poisson point processes. Given 
a measure ν on Z, we say that η is a Poisson point process with intensity measure ν
whenever: for all pairwise disjoint measurable sets A1, . . . , Al ∈ Z, with ν(Ai) < ∞
for all i = 1, . . . , l, the random vector (η(A1), . . . , η(Al)) is a vector of independent 
Poisson random variables with mean (ν(A1), . . . , ν(Al)). Provided such process exists, 
the intensity measure ν characterizes the law of such a process; we write Πν to denote this 
law. Existence of Poisson point process on arbitrary state space and arbitrary reference 
measure is in general a non-trivial fact. However, if ν ∈ Mb(Z), one can easily check that 
a mixed binomial process η constructed using (Xi)i≥1 of common law μ = ν and a 
ν(Z)
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random variable N with a Poisson distribution of mean ν(Z) is a Poisson process with 
intensity measure ν. In other words: for all ν ∈ Mb(Z),

Πν = Bμ,κ, (3.1)

where μ = ν
ν(Z) ∈ P(Z) and κ ∈ P(N) is the Poisson distribution of mean ν(Z). By a 

simple gluing procedure [25, Theorem 3.6], one can also construct Poisson point processes 
with σ-finite intensity measure. More precisely, writing ν =

∑∞
i=1 νn with νn ∈ Mb(Z), 

we have that

Πν = Πν1 ∗ Πν2 ∗ . . . ,

where ∗ is the convolution product. In general, Πν ∈ P(MN̄(Z)); Πν ∈ P(MN(Z)) if 
and only if ν ∈ Mb(Z); and Πν ∈ P(MN̄(Z) \MN(Z)) if and only if ν(Z) = ∞.

3.2. Transport-entropy inequalities when the sampling measure satisfies a Talagrand 
type inequality

In this section, we derive some transport-entropy inequalities of the type (Tω) on 
MN(Z), where ω is of the form Tρ : MN(Z) × MN(Z) → [0, ∞] for some ρ : Z × Z →
[0, ∞]. We denote by Tρ the transport cost TTρ

, given explicitly by

Tρ(Π1,Π2) = inf E [Tρ(ξ1, ξ2)] , Π1,Π2 ∈ P(MN(Z)),

where the infimum runs over the couples (ξ1, ξ2) of point processes such that ξ1 ∼ Π1
and ξ2 ∼ Π2. As already observed in Section 1, the condition Tρ(Π1, Π2) < +∞ is very 
strong and it implies in particular that there exists a coupling (ξ1, ξ2) of Π1, Π2 such 
that ξ1(Z) = ξ2(Z) almost surely. In particular, the finiteness of Tρ(Π1, Π2) implies that 
the law of the total mass is the same under Π1 and Π2.

Theorem 3.1. Let κ ∈ P(N), μ ∈ P(Z), and ρ : Z×Z → [0, ∞] be lower semi-continuous. 
Assume μ ∈ P(Z) satisfies (Tρ) with constants a1, a2 > 0. Then, for all Π1, Π2 ∈
P(MN(Z)) such that Tρ(Π1, Π2) < ∞, it holds

Tρ(Π1,Π2) + (a1 + a2)H(λ|κ) ≤ a1H(Π1|Bμ,κ) + a2H(Π2|Bμ,κ), (3.2)

where λ ∈ P(N) is such that for all i ∈ {1, 2}, Πi({η ∈ MN(Z) : η(Z) ∈ A}) = λ(A), 
for all Borel A ⊂ N.

Note that the preceding result could be alternatively stated on the bigger state space 
Mb(Z) instead of MN(Z). This actually does not make any difference since H(Π|Bμ,κ) <
+∞ implies that Π ∈ MN(Z). Specifying ρ = d2 in Theorem 3.1 gives Theorem 1.1.
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Remark 2. Let us comment on (3.2).
This inequality is a transport-entropy inequality (Tω), where ω = Tρ (as intro-

duced in Section 2.3.1) with the additional constraint of finiteness of the transport cost: 
Tρ(Π1, Π2) < +∞. This condition is crucial since otherwise it would be possible to have 
a finite right hand side and an infinite left hand side. For instance, take μ ∈ P(Z) sat-
isfying (Tρ) with some constant a > 0, take n1 
= n2 and consider Bμ,ni

the binomial 
point process of size ni. Then Tρ(Bμ,n1 , Bμ,n2) = ∞. On the other hand, denoting by 
Πμ the law of the Poisson point process with intensity measure μ and taking η ∼ Πμ, 
we easily see that Bμ,ni

= Law(η|η(Z) = ni). Therefore, Bμ,ni
is absolutely continuous 

with respect to Πμ with Radon-Nikodym derivative given by 1
P(η(Z)=ni)1{η(Z)=ni} and, 

thus, H(Bμ,ni
|Πμ) = − logP (η(Z) = ni) = − log e−1

ni! < +∞.

3.2.1. Binomial process with deterministic size
As a first step, we prove Theorem 3.1 in the particular case of binomial point process 

of fixed size n ∈ N.

Proposition 3.2. Let n ∈ N, μ ∈ P(Z) and ρ : Z×Z → [0, ∞] be lower semi-continuous. 
Assume μ ∈ P(Z) satisfies (Tρ) with constants a1, a2 > 0. Then, for all Π1, Π2 ∈
P(Mn(Z)) such that Tρ(Π1, Π2) < ∞, it holds

Tρ(Π1,Π2) ≤ a1H(Π1|Bμ,n) + a2H(Π2|Bμ,n).

Proof. For n = 0 there is nothing to prove. Fix n ≥ 1; by the tensorization property 
Proposition 2.7, the probability measure μ⊗n ∈ P(Zn) satisfies the transport-entropy 
inequality (Tρn) with constant a and with the cost function ρn defined by

ρn(x, y) =
n∑

i=1
ρ(xi, yi), x, y ∈ Zn.

Now, consider the map Sn : Zn → Mn(Z) defined by

Sn(z) =
n∑

i=1
δzi , ∀z = (z1, . . . , zn) ∈ Zn. (3.3)

By construction, Sn
#μ⊗n = Bμ,n. Furthermore, for any ξ1, ξ2 ∈ Mn(Z), it follows from 

Proposition 2.5 that

Tρ(ξ2|ξ1) = inf
{

n∑
i=1

ρ(xi, yi) : ξ1 = Sn(x), ξ2 = Sn(y)
}

= Sn
#ρn,
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using the notation introduced in (2.19). Finally, we obtain from Proposition 2.8 that 
Bμ,n satisfies a transport-entropy inequality on Mn(Z) with respect to the cost function 
Tρ (and with the same constants a1, a2). �
3.2.2. Binomial processes with general size

Now we are ready to prove Theorem 3.1 in the general case.

Proof of Theorem 3.1. Let Π1, Π2 ∈ P(MN(Z)) such that Tρ(Π1, Π2) < ∞ and 
H(Πi|Bμ,κ) < +∞, i = 1, 2. Recall that, according to Lemma 2.1, MN(Z) endowed 
with the weak topology is a Polish space. According to Theorem 2.3, the transport cost 
Tρ : MN(Z) × MN(Z) → [0, ∞] is lower semi-continuous. Therefore, according to [45, 
Theorem 4.1] (or Theorem 2.2), there exists an optimal coupling for Tρ(Π1, Π2); we 
write (ξ1, ξ2) for such an optimal coupling. From the finiteness assumption of the trans-
port distance, we have that ξ1(Z) = ξ2(Z) := K almost surely. We denote by λ the law 
of K. For n ∈ N such that λ(n) > 0, we write

Πn = Law((ξ1, ξ2)|K = n),

we consider (ξn1 , ξn2 ) ∼ Πn, and we write Πn
1 (resp. Πn

2 ) for the law of ξn1 (resp. ξn2 ), that 
is Πn

1 and Πn
2 are the marginals of Πn. Applying Theorem 2.4, we see that (ξn1 , ξn2 ) is an 

optimal coupling for Tρ(Πn
1 , Πn

2 ). By construction, we have that

Tρ(Π1,Π2) = E [Tρ(ξ1, ξ2)]

=
∑
n∈N

E [Tρ(ξ1, ξ2)|K = n]P (K = n)

=
∑
n∈N

E [Tρ(ξn1 , ξn2 )]P (K = n)

=
∑
n∈N

Tρ(Πn
1 ,Πn

2 )P (K = n).

According to Proposition 3.2, we know that Bμ,n satisfies a transport-entropy inequality 
with the cost function Tρ on Mn(Z) and constants a1, a2. Thus

Tρ(Π1,Π2) ≤
∑
n∈N

(a1H(Πn
1 |Bμ,n) + a2H(Πn

2 |Bμ,n))P (K = n). (3.4)

It follows from the chain rule for relative entropy (recalled below) that

H(Πi|Bμ,κ) = H(λ|κ) +
∑
n∈N

H(Πn
i |Bμ,n)P (K = n). (3.5)

Plugging (3.5) into (3.4) gives (3.2) and completes the proof.
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For the sake of completeness, we recall the proof of (3.5). Let η ∼ Bμ,κ with N ∼ κ

(see (1.10)). Recall that we assume that H(Πi|Bμ,κ) < +∞. Denoting by fi : MN(Z) →
R+ the Radon-Nikodym derivative of Πi with respect to Bμ,κ, for all measurable set 
A ⊂ MN(Z), we have that

P (ξni ∈ A)P (K = n) = P (ξi ∈ A,K = n)

= E
[
1{η∈A∩Mn(Z)}fi(η)

]
= E

[
1{N=n}1{η∈A}fi(η)

]
= P (N = n)E

[
1{η∈A}fi(η)|N = n

]
.

(3.6)

This shows that if P (K = n) > 0 then P (N = n) > 0 and for such n we have that

dΠn
i

dBμ,n
= dΠi

dBμ,κ

P (N = n)
P (K = n)1{N=n}. (3.7)

Hence,

H(Πn
i |Bμ,n)P (K = n) = E[log fi(ξi)|N = n]P (N = n) − P (K = n) log P (K = n)

P (N = n) .

(3.8)
Summing the previous expression for n ∈ N yields (3.5). �
3.3. Universal Marton-type inequalities for Poisson point processes

3.3.1. Deterministic size case
Recall the definition of the partial transport cost Tρ,0 introduced at the end of Sec-

tion 2.2.4.

Theorem 3.3. Let n ∈ N, μ ∈ P(Z). Assume that μ satisfies (T̃α,ρ) on Z for a1, a2 > 0
and for some lower semi-continuous cost function ρ : Z × Z → [0, ∞] and α : [0, ∞] →
[0, ∞] convex. Then, Bμ,n satisfies the transport-entropy inequality (Tc) (with the same 
constants) on Mn(Z) with the cost function c : Mn(Z) ×P(Mn(Z)) → R+ defined, for 
all ξ ∈ Mn(Z) and Π ∈ P(Mn(Z)), by

c(ξ,Π) =
ˆ

α

(
1

ξ(x)

ˆ
Tρ,0(χ, ξ(x)δx)Π(dχ)

)
ξ(dx). (3.9)

Before proving Theorem 3.3, let us highlight a particular case. Thanks to the universal 
transport inequalities by Marton and Dembo recalled in Section 2.3.1, binomial processes 
always satisfy some transport-entropy inequality, as shown in the following result.

Corollary 3.4. Let t ∈ [0, 1] and let αt be the function defined by (2.16). Let μ ∈ P(Z)
and n ∈ N. Then, Bμ,n satisfies a transport-entropy inequality (Tc), namely
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Tct(Π2|Π1) ≤
1
t
H(Π1|Bμ,n) + 1

1 − t
H(Π2|Bμ,n),

where, for all ξ ∈ Mn(Z) and Π ∈ P(Mn(Z)):

ct(ξ,Π) =
ˆ

αt

(ˆ [
1 − χ(x)

ξ(x)

]
+

Π(dχ)
)
ξ(dx). (3.10)

Remark 3. By (2.16), for all t ∈ [0, 1], αt(u) ≥ u2

2 , u ∈ [0, 1] Thus, the same conclusion 

holds with u
2

2 replacing αt in (3.10).

Proof of Corollary 3.4. According to Section 2.3.1, the probability measure μ satisfies 
the inequality (T̃αt,dH

) with αt given by (2.16) and the constants a1 = 1
t and a2 = 1

1−t . 
Moreover, if χ, ξ ∈ Mn(Z), then using that ξ(x) ≤ ξ(Z) = χ(Z), we find that

TdH ,0(χ, ξ(x)δx) = (ξ(x) − χ(x))+. (3.11)

Applying Theorem 3.3 concludes the proof. �
Proof of Theorem 3.3. We follow the proof of Proposition 3.2. According to Proposi-
tion 2.7, the probability measure μ⊗n satisfies the transport inequality (Tc) on Zn with 
constants a1, a2 with respect to the cost function c defined by

c(x, p) =
n∑

i=1
α

(ˆ
ρ(xi, y)pi(dy)

)
, x ∈ Zn, p ∈ P(Zn). (3.12)

The probability measure Bμ,n is the push-forward of μ⊗n by the map Sn defined by (3.3). 
Therefore, according to Proposition 2.8, we see that Bμ,n satisfies the transport-entropy 
inequality with the cost function c̄ defined for all (ξ, Π) ∈ Mn(Z) ×P(Mn(Z)) by

c̄(ξ,Π) = inf
{
c(x, p) : (x, p) such that Sn(x) = ξ, Sn

#p = Π
}
. (3.13)

In other words, if ξ =
∑n

i=1 δai
, then

c̄(ξ,Π) = inf
{

n∑
i=1

α (E [ρ(Yi, xi)])
}
, (3.14)

where the infimum runs over all random vectors Y = (Y1, . . . , Yn) such that 
∑n

i=1 δYi
∼ Π

(whose existence is given by [25, Proposition 6.3]) and all x = (x1, . . . , xn) ∈ Zn such that 
ξ =

∑n
i=1 δxi

. The constraint ξ =
∑n

i=1 δxi
determines the xi’s up to permutation. Since 

the other constraint 
∑n

i=1 δYi
∼ Π is permutation invariant, one can assume without loss 

of generality that ai = xi for all i ∈ {1, . . . , n}. In this way, we obtain that
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c̄(ξ,Π) = inf
{

n∑
i=1

α (E [ρ(Yi, ai)]) :
n∑

i=1
δYi

∼ Π
}
. (3.15)

Let us prove that c̄ is bounded from below by the cost given in (3.9). For all a ∈ Z, such 
that ξ(a) > 0, we define I(a) = {i : ai = a}. Then, letting χ =

∑n
i=1 δYi

, we obtain

n∑
i=1

α(E [ρ(Yi, ai)]) =
∑

a:ξ(a)>0

ξ(a)
∑

i∈I(a) α(E [ρ(Yi, ai)])
ξ(a)

≥
∑

a:ξ(a)>0

ξ(a)α
(
E

[∑
i∈I(a) ρ(Yi, a)

ξ(a)

])

≥
∑

a:ξ(a)>0

ξ(a)α
(
E

[Tρ,0(χ, ξ(a)δa)
ξ(a)

])
,

where the first inequality comes from Jensen inequality and the second by definition of
(2.14). This completes the proof. �
3.3.2. Poisson case

First, a process level “binomial to Poisson argument”, adapted from [33], allows us to 
extend the conclusion of Theorem 3.3 to Poisson processes with finite intensity measure. 
Then we will use another approximation argument to pass from the case of finite intensity 
measure to the case of σ-finite intensity measure.

Theorem 3.5. Let αt be the function defined by (2.16). Let ν be a σ-finite Radon measure 
on Z. Then Πν satisfies a transport-entropy inequality (Tc), namely

Tct(Π2|Π1) ≤
1
t
H(Π1|Πν) + 1

1 − t
H(Π2|Πν),

where the cost function ct : MN̄(Z) ×P(MN̄(Z)) → [0, ∞] is defined by

ct(ξ,Π) =
ˆ

αt

(ˆ [
1 − χ(x)

ξ(x)

]
+

Π(dχ)
)
ξ(dx), ξ ∈ MN̄(Z),Π ∈ P(MN̄(Z))

(3.16)

In particular, this result gives Theorem 1.2.

Proof. We first assume that there exists μ ∈ P(Z) and λ > 0 such that ν = λμ. For 
μ ∈ P(Z), n ∈ N, and t ∈ [0, 1], the t-thinning of Bμ,n is the law denoted by B(t)

μ,n of 
the point process obtained by removing each point of η ∼ Bμ,n with probability (1 − t)
independently of the others. Formally, this family of point processes can be realized for 
instance as follows: for t ∈ [0, 1], set



N. Gozlan et al. / Journal of Functional Analysis 281 (2021) 109141 27
η̃(t) =
n∑

i=1
εiδXi

with X1, . . . , Xn i.i.d of law μ and ε1, . . . , εn i.i.d with a Bernoulli distribution of pa-
rameter t ∈ [0, 1]. Then B(t)

μ,n is by definition the law of η̃(t). We conveniently use a 
slightly different construction taken from [33]. Let us add a cemetery point ∞ to Z by 
considering Ẑ = Z ∪ {∞} where ∞ /∈ Z and {∞} is isolated. Define

η̂(t) =
n∑

i=1
δ
X̂

(t)
i
,

where X̂(t)
1 , . . . , X̂(t)

n are i.i.d random variables with law tμ + (1 − t)δ∞. Defining

η(t) = η̂
(t)
|Z =

n∑
i=1

1{X̂(t)
i �=∞}δX̂(t)

i
,

we then easily see that η(t) and η̃(t) have the same law.
Let λ > 0, and n sufficiently large so that λn := λ/n ≤ 1; we write Πn = B

(λn)
μ,n . This 

sequence Πn converges to Πν , the law of the Poisson process of intensity measure ν := λμ. 
Indeed, according to [24, Theorem 4.34], one gets that for all Borel set A ⊂ MN(Z):

Πn(A) −−−−→
n→∞

Πν(A).

Since according to Lemma 3.6 below, the cost function c is lower semi-continuous, 
in view of the previous convergence and Lemma 2.9, to conclude the proof in the case 
of finite intensity measure, we simply establish a transport-entropy inequality for Πn

(n ∈ N). Let μ̂n = λnμ + (1 − λn)δ∞; according to Corollary 3.4, we see that Bμ̂n,n ∈
P(Mn(Ẑ)) satisfies the transport-entropy inequality with constants a1 = 1

t and a2 =
1

1−t , and with cost function ĉ : Mn(Ẑ) ×P(Mn(Ẑ)) → R+ defined by

ĉ(ξ̂, Π̂) =
ˆ

αt

(ˆ [
1 − χ̂(x)

ξ̂(x)

]
+

Π̂(dχ̂)
)
ξ̂(dx), ξ̂ ∈ Mn(Ẑ), Π̂ ∈ P(Mn(Ẑ)),

where αt is the function defined in (2.16). By construction, Πn is the push-forward of 
Bμ̂n,n under the map S : Mn(Ẑ) → MN(Z) defined, for all ξ̂ =

∑n
i=1 δx̂i

, x̂1, . . . , ̂xn ∈ Ẑ, 
by

S(ξ̂) = ξ̂ |Z =
n∑

i=1
1{x̂i∈Z}δx̂i

.

According to Proposition 2.8, it follows that Πn satisfies the transport-entropy inequality 
with the same constants and with the cost function c̄ : MN(Z) × P(MN(Z)) → R+
defined by
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c̄(ξ,Π) = inf
{
c(ξ̂, Π̂) : S(ξ̂) = ξ, S#Π̂ = Π

}
, ξ ∈ MN(Z),Π ∈ P(MN(Z)).

Now, if S(ξ̂) = ξ and S#Π̂ = Π, then

ĉ(ξ̂, Π̂) =
ˆ

Ẑ

αt

(ˆ [
1 − χ̂(x)

ξ̂(x)

]
+

Π̂(dχ̂)
)
ξ̂(dx)

≥
ˆ

Z

αt

(ˆ [
1 − S(χ̂)(x)

ξ(x)

]
+

Π̂(dχ̂)
)
ξ(dx)

=
ˆ

Z

αt

(ˆ [
1 − χ(x)

ξ(x)

]
+

Π(dχ)
)
ξ(dx)

= c(ξ,Π),

where, for short, we write c = ct for the cost function defined in (3.16). This concludes 
the proof for Poisson point process with finite intensity measure.

Now, we assume that ν is σ-finite, and we let (Zn) be an increasing measurable 
exhaustion of Z in measurable sets of finite measure. Given η ∈ MN̄(Z), we write 
η�Zn

= η(· ∩ Zn). Let i = 1, 2. We can assume that Πi is absolutely continuous with 
respect to Πν with density Fi, and, for n ≥ 1, we write Πn

i for the push-forward of Πi

by the map η → η�Zn
. Let A ∈ MN̄(Z), we have

Πn
i (A) =

ˆ
1A(η�Zn

)Fi(η�Zn
+ η�Z\Zn

)Πν(dη).

By definition of Poisson point processes, under Πν , (η�Zn
, η�Z\Zn

) has law Πν�Zn
⊗

Πν�Z\Zn
. Thus, we find that Πn

i is absolutely continuous with respect to Πn
ν = Πν�Zn

with Radon-Nikodym derivative:

dΠn
i

dΠn
ν

(η) =
ˆ

Fi(η + ξ)Πν�Z\Zn
(dξ).

Let φ(t) = t log t which is a convex function. By Jensen’s inequality, we get

H (Πn
i |Πn

ν ) =
ˆ

φ

(ˆ
Fi(η + ξ)Πν�Z\Zn

(dξ)
)

Πn
ν (dη)

≤
ˆ

φ(Fi(η + ξ))Πn
ν (dη)Πν�Z\Zn

(dξ)

= H(Πi|Πν),

were we used that the sum of two independent Poisson point processes with intensity ν
and ν′ is a Poisson point process with intensity ν + ν′ [25, Theorem 3.3]. By the result 
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for Poisson point processes with finite intensity measures and the above inequality, we 
have that

Tct (Πn
2 |Πn

1 ) ≤ 1
t
H (Πn

1 |Πn
ν ) + 1

1 − t
H (Πn

2 |Πn
ν )

≤ 1
t
H(Π1|Πν) + 1

1 − t
H(Π2|Πν).

(3.17)

For all G ∈ Cb(MN̄(Z)), we have, by dominated convergence:

Πn
i (G) =

ˆ
G(η�Zn

)Πi(dη) −−−−→
n→∞

Πi(G).

This means that

Πn
i

weakly−−−−→
n→∞

Πi.

Using Lemma 3.6 and Theorem 2.3, the map Tct is weakly lower semi-continuous. Thus 
in view of (3.17), we get

Tct(Π2|Π1) ≤ lim inf
n→∞

Tct(Πn
2 |Πn

1 ) ≤ 1
t
H(Π1|Πν) + 1

1 − t
H(Π2|Πν).

This concludes the proof. �
Now we turn to the proof of the lower semi-continuity of c.

Lemma 3.6. Let α : R → [0, ∞] be a lower semi-continuous function. The function 
c : MN̄(Z) ×P(MN̄(Z)) defined by

c(ξ,Π) =
ˆ

α

(ˆ [
1 − χ(x)

ξ(x)

]
+

Π(dχ)
)
ξ(dx)

is lower semi-continuous. Moreover, the restriction of c to MN(Z) ×P(MN(Z)) is also 
lower semi-continuous.

Proof. We will first show that c : MN(Z) ×P(MN(Z)) → [0, ∞] is lower semi-continuous 
and then show that c : MN̄(Z) × P(MN̄(Z)) → [0, ∞] is lower semi-continuous. Let 
{ξn : n ∈ N} ∪ {ξ} ⊂ MN(Z) and {Πn : n ∈ N} ∪ {Π} ⊂ P(MN(Z)) such that, as 
n → ∞, (ξn) converges weakly to ξ, and (Πn) converges weakly (with respect to the 
weak topology on MN(Z)) to Π. Let us show that lim infn→+∞ c(ξn, Πn) ≥ c(ξ, Π). By 
definition there exists q ∈ N and x1, . . . , xq ∈ Z such that ξ =

∑q
i=1 δxi

. According to 
the proof of Lemma 2.1, we can without loss of generality assume that ξn =

∑q
i=1 δxn

i

where xn
i → xi when n → ∞. Let p be the number of points in the support of ξ

and write Supp(ξ) = {a1, . . . , ap} (with therefore pairwise distinct a′is) and denote by 
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kj = ξ({aj}), for all 1 ≤ j ≤ p. For all j ∈ {1, . . . , p} denote by Ij = {i : xi = aj} and by 
Sn
j = {xn

i : i ∈ Ij}. By Jensen’s inequality, and the fact that α and [0, 1] � u → [1 − u]+
are convex, we find that

ξ(aj)
∑
z∈Sj

n

α

(ˆ [
1 − χ(z)

ξn(z)

]
+

Πn(dχ)
)

ξn(z)
ξ(aj)

≥ ξ(aj)α
(ˆ [

1 −
∑

z∈Sj
n
χ(z)

ξ(aj)

]
+

Πn(dχ)
)
.

Fix some ε > 0; for n large enough, one has Sn
j ⊂ B̄(aj , ε) for all 1 ≤ j ≤ p, where 

B̄(a, ε) denotes the closed ball of center a and radius ε. Since the points of Sj
n are all 

distinct, we find 
∑

z∈Sj
n
χ(z) = χ(Sj

n) ≤ χ(B̄(aj , ε)). Hence, by the monotonicity of α:

ξ(aj)α
(ˆ [

1 −
∑

z∈Sn
j
χ(z)

kj

]
+

Πn(dχ)
)

≥ ξ(aj)α
(ˆ [

1 − χ(B̄(aj , ε))
kj

]
+

Πn(dχ)
)
.

Since ξn =
∑p

j=1
∑

z∈Sj
n
ξn(z)δz, summing the two previous estimates over j ∈ [p] gives

c(ξn,Πn) ≥
ˆ

α

(ˆ [
1 − χ(B̄(a, ε))

ξ(a)

]
+

Πn(dχ)
)

dξ(a).

According to Portmanteau theorem, since B̄(a, ε) is a closed set, the map MN(Z) � χ →
χ(B̄(a, ε)) is upper-semicontinuous (for the weak topology on MN(Z)); hence, the lower 
semi-continuity (for the weak topology on MN(Z)) of the map

MN(Z) � χ →
[
1 − χ(B̄(a, ε))

ξ(a)

]
+
.

Therefore, using again the Portmanteau theorem, we obtain, for any fixed a, the lower 
semi-continuity of the map

Π →
ˆ [

1 − χ(B̄(a, ε))
ξ(a)

]
+

Π(dχ). (3.18)

Therefore, letting n → ∞, and using that lim inf an + bn ≥ lim inf an + lim inf bn yield

lim inf
n→+∞

c(ξn,Πn) ≥
ˆ

α

(ˆ [
1 − χ(B̄(a, ε))

ξ(a)

]
+

Π(dχ)
)

dξ(a).

Finally, letting ε → 0 and using the dominated convergence theorem, we have that

χ(B̄(a, ε)) −−−→ χ(a).

ε→0
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Using again the dominated convergence theorem, we thus find that
ˆ [

1 − χ(B̄(a, ε))
ξ(a)

]
+

Π(dχ) −−−→
ε→0

ˆ [
1 − χ(a)

ξ(a)

]
+
Π(dχ).

Since α is lower semi-continuous, we finally find

lim inf
n→+∞

c(ξn,Πn) ≥ c(ξ,Π).

This proves that c : MN(Z) ×MN(Z) → [0, ∞] is weakly lower semi-continuous. Now let 
us consider

ξn
MN̄(Z)−−−−→
n→∞

ξ; and Πn
P(MN̄(Z))−−−−−−−→

n→∞
Π.

Fix o ∈ Z, and, for L > 0, write BL = B(o, L). By definition of the vague convergence, 
for all L > 0,

ξn�BL

weakly−−−−→
n→∞

ξ�BL
.

By [24, Lemma 4.1], MN̄(Z) � χ → χ(B̄(a, ε)) is upper semi-continuous (for the vague 
topology on MN̄(Z)); hence, using again Portmanteau theorem, one gets that for any 

fixed a, the map P(MN̄(Z)) � Π →
´ [

1 − χ(B̄(a,ε))
ξ(a)

]
+

Π(dχ) is lower-semicontinuous. 
Thus, arguing as before, we find that:

lim inf
n→∞

c
(
ξn�BL

,Πn

)
≥
ˆ

α

(ˆ [
1 − χ(a)

ξ(a)

]
+

Π(dχ)
)

1BL
(a)ξ(da).

On the one hand, since ξn ≥ ξn�BL
, we have that c(ξn, Πn) ≥ c(ξn�BL

, Πn). On the other 
hand, by the monotone convergence theorem, we find that

ˆ
α

(ˆ [
1 − χ(a)

ξ(a)

]
+

Π(dχ)
)

1BL
(a)ξ(da) −−−−→

L→∞
c(ξ,Π).

Combining these observations, we obtain that

lim inf
n→∞

c(ξn,Πn) ≥ c(ξ,Π).

This concludes the proof. �
4. Applications to concentration estimates

With the help of the transport-entropy inequalities proved in Section 3, we derive 
concentration results for Poisson point processes and other mixed binomial processes. 
Below, we highlight some particular cases.
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4.1. Generic concentration of measure inequalities

First let us draw some consequences of Theorem 3.1.

Corollary 4.1. Let κ ∈ P(N), μ ∈ P(Z), and η ∼ Bμ,κ. Assume μ ∈ P(Z) satisfies (Tρ), 
for some lower semi-continuous cost function ρ : Z × Z → [0, ∞], with constant a > 0. 
For all Borel sets A1, A2 ⊂ MN(Z) such that P (η ∈ Ai) > 0 and Tρ(Π1, Π2) < +∞, 
where Πi = 1Ai

Bμ,κ(Ai) Bμ,κ, it holds that

P (η ∈ A1)P (η ∈ A2) ≤ exp
(
−1
a

inf
ξ1∈A1,ξ2∈A2

Tρ(ξ1, ξ2)
)
.

Proof. Simply apply the transport-entropy of Theorem 3.1 to the probability measures 
Π1 and Π2 defined above and use that H(Πi|Bμ,κ) = − logP (η ∈ Ai), i = 1, 2, and 
the lower bound Tρ(Π1, Π2) ≥ infξ1∈A1,ξ2∈A2 Tρ(ξ1, ξ2). Details of this argument can be 
found, for instance, in [19]. �

Due to the requirement Tρ(Π1, Π2) < +∞, this concentration bound seems delicate 
to manipulate.

Now let us examine the consequences of Theorem 3.3 and Theorem 3.5. To state them, 
let us recall some definitions from [23] adapted to our Poisson setting. Let c : MN̄(Z) ×
P(MN̄(Z)) → [0, ∞] be a cost. For a Borel set A ⊂ MN̄(Z), we write

cA(ξ) = inf
Π(A)=1

c(ξ,Π), ∀ξ ∈ MN̄(Z), (4.1)

for the Talagrand convex distance associated with A and c (which, despite its name, is 
not really a distance), and

Ar = {x ∈ MN̄(Z) : cA(x) ≤ r}, r ≥ 0, (4.2)

for the enlargement of A with respect to the Talagrand convex distance.
With these notations, we state the following concentration result.

Corollary 4.2. Let t ∈ (0, 1) and αt be the function defined in (2.16).

(a) Let η be a binomial process (of size n). Then for every Borel set A ⊂ Mn(Z)

P (η ∈ A)
1
t P (η /∈ Ar)

1
1−t ≤ e−r, ∀r ≥ 0,

where Ar is the enlargement of A (in Mn(Z)) given in (4.2) for the choice of c = ct
given in (3.10), that is

c(ξ,Π) =
ˆ

αt

(ˆ [
1 − χ(x)

ξ(x)

]
Π(dχ)

)
ξ(dx), ξ ∈ Mn(Z), Π ∈ P(Mn(Z)).
+
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(b) Let η be a Poisson point process with finite intensity measure ν ∈ Mb(Z). Then for 
every Borel set A ⊂ MN(Z)

P (η ∈ A)
1
t P (η /∈ Ar)

1
1−t ≤ e−r, ∀r ≥ 0,

where Ar is the enlargement of A (in MN(Z)) given in (4.2) for the choice of c = ct
given in (3.16), that is

c(ξ,Π) =
ˆ

αt

(ˆ [
1 − χ(x)

ξ(x)

]
+

Π(dχ)
)
ξ(dx) ξ ∈ MN(Z), Π ∈ P(MN(Z)).

(c) Let η be a Poisson point process with σ-finite intensity measure ν. Then for every 
Borel set A ⊂ MN̄(Z)

P (η ∈ A)
1
t P (η /∈ Ar)

1
1−t ≤ e−r, ∀r ≥ 0,

where Ar is the enlargement of A (in MN̄(Z)) given in (4.2) for the choice of c = ct
given in (3.16), that is

c(ξ,Π) =
ˆ

αt

(ˆ [
1 − χ(x)

ξ(x)

]
+

Π(dχ)
)
ξ(dx) ξ ∈ MN̄(Z), Π ∈ P(MN̄(Z)).

Proof. Combine [23, Theorem 5.1] with Corollary 3.4 or Theorem 3.5. �
For further discussions, let us first recall some definitions and state a theorem of [33]

to be compared with Corollary 4.2. Given a point measure ξ ∈ MN̄(Z), we write L2(ξ)
for the space of functions g : Z → R such that g(x) = 0 if ξ(x) = 0 and such that:

|g|2L2(ξ) :=
∑
x∈ξ

ξ(x)g(x)2 < ∞,

where the notation x ∈ ξ is shorthand for x ∈ supp ξ. When equipped with the norm 
| · |L2(ξ), the linear space L2(ξ) is a Hilbert space. Given another χ ∈ MN̄(Z), we 
write ξ \ χ for the point measure given by 

∑
x∈ξ (ξ(x) − χ(x))+δx. For A ⊂ MN̄(Z) and 

ξ ∈ MN̄(Z), following [33] ([33] only works on MN(Z)), we define

dA(ξ) = sup
|g|L2(ξ)≤1

inf
χ∈A

ˆ
gd(ξ \ χ), (4.3)

where the supremum runs over non-negative g only, and we also define

Ad
r = {ξ ∈ MN̄(Z) : dA(ξ) ≤ r}, r ≥ 0.

Then, we have the following extension of [33, Theorem 1.1].
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Theorem 4.3. Let η be a Poisson point process on Z with a σ-finite intensity. Then, for 
every Borel set A ⊂ MN̄(Z),

P (η ∈ A)P (η /∈ Ad
r) ≤ e−

r2
4 .

The case of a Poisson point processes with finite intensity measure is established in 
[33], whereas the case of an intensity with infinite mass is new. The proof of Theorem 4.3
follows immediately from Corollary 4.2 (with t = 1/2) and the following lemma (using 
the fact that α1/2(u) ≥ u2/2).

Lemma 4.4. Let the above notations prevail. Choose α(u) = u2

2 , for all u ≥ 0, and

c(ξ,Π) =
ˆ

α

(ˆ [
1 − χ(x)

ξ(x)

]
+

Π(dχ)
)
ξ(dx), ξ ∈ MN̄(Z),Π ∈ P(MN̄(Z)).

Then, for any A ⊂ MN̄(Z), it holds Ad
2
√
r

= Ar; equivalently cA(ξ) = 1
2dA(ξ)2, for all 

ξ ∈ MN̄(Z).

Proof. The argument is quite classical and goes back to Talagrand. We give a proof for 
completeness. First, we recall this well-known duality formula on Hilbert spaces: if H is 
an Hilbert space with inner product 〈·, ·〉 and induced norm | · |, we have

|x| = sup
|y|≤1

〈x, y〉.

Second, we recall this well-known fact about randomization of infimum

inf
x∈A

f(x) = inf
X∈A

E[f(X)],

where the second infimum runs on random variables X taking values in A.
Third, for two convex spaces C1 and C2, consider a bilinear functional Λ: C1×C2 → R

that is upper semi-continuous and concave in its first variable, and lower semi-continuous 
and convex in its second variable. If C1 is compact, then by the min-max theorem [40, 
Corollary 3.3]:

sup
C1

inf
C2

Λ = inf
C2

sup
C1

Λ.

We equip L2(ξ) with the weak topology σ(L2(ξ), L2(ξ)) defined by duality, and we 
write L2

+(ξ) for the convex cone of non-negative g ∈ L2(ξ). We write Pξ for the convex 
set of all Π ∈ P(MN̄(Z)) such that(

Z � x →
ˆ [

1 − χ(x)
ξ(x)

]
Π(dχ)

)
∈ L2(ξ).
+
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We have that

Pξ = {Π ∈ P(MN̄(Z)) : c(ξ,Π) < ∞}.

We now define the function Λ: L2
+(ξ) ×P(MN̄(Z)) → [0, ∞] by

Λ(g,Π) =
ˆ

gd(ξ \ χ)Π(dχ) =
ˆ

g(x)
ˆ [

1 − χ(x)
ξ(x)

]
+

Π(dχ)ξ(dx), if Π ∈ Pξ,

and Λ(g, Π) = ∞ otherwise. We claim that Λ is upper semi-continuous and concave in 
its first variable. The concavity is immediate. Let us show the upper semi-continuity. Let 
Π ∈ P(MN̄(Z)) and {gn : n ∈ N} ∪ {g} ⊂ L2

+(ξ) such that:

gn
σ(L2(ξ),L2(ξ))−−−−−−−−−−→

n→∞
g.

Without loss of generality, we can assume that Π ∈ Pξ (otherwise Λ(g, Π) = ∞ and 
there is nothing to prove). From the definition of the σ(L2(ξ), L2(ξ)) convergence, and 
the fact that Π ∈ Pξ, we find

lim sup Λ(gn,Π) = lim Λ(gn,Π) = Λ(g,Π).

We now claim that Λ is lower semi-continuous and convex in its second variable. The 
convexity is also immediate. By [24, Theorem 4.1], for all x ∈ ξ and g ∈ L2

+(ξ), the 
function

MN̄(Z) � χ → g(x)(ξ(x) − χ(x))+,

is lower semi-continuous; hence by Portmanteau’s theorem:

P(MN̄(Z)) � Π →
ˆ

g(x)(ξ(x) − χ(x))+Π(dχ),

is lower semi-continuous. By Tonelli’s theorem, we find that

Λ(g,Π) =
∑
x∈ξ

ˆ
g(x)(ξ(x) − χ(x))+Π(dχ).

We conclude since a sum of lower semi-continuous functions is again lower semi-
continuous. By the Banach-Alaoglu theorem, B, the unit ball of L2(ξ), is weakly-∗
compact; hence, since L2(ξ) is reflexive, B is weakly compact. Let us also write B+ for 
B∩L2

+(ξ). We can therefore apply the randomization of infimum, the min-max theorem 
(remark that {Π ∈ P(MN̄(Z)) : Π(A) = 1} is convex), and the duality formula for the 
norm in Hilbert spaces (we recall these three arguments at the beginning of the proof) 
to obtain that
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dA(ξ) = sup
g∈B+

inf
χ∈A

ˆ
gd(ξ \ χ)

= sup
g∈B+

inf
Π(A)=1

ˆ
g(x)

(ˆ [
1 − χ(x)

ξ(x)

]
+

Π(dχ)
)
ξ(dx)

= inf
Π(A)=1

sup
g∈B+

ˆ
g(x)

(ˆ [
1 − χ(x)

ξ(x)

]
+

Π(dχ)
)
ξ(dx)

= inf
Π(A)=1

⎛⎝ˆ (ˆ [
1 − ν(x)

ξ(x)

]
+
Π(dν)

)2

ξ(dx)

⎞⎠1/2

= (2cA(ξ))1/2. �
4.2. Concentration of measure for convex functionals

On Rp, Marton’s inequality implies a deviation inequality for convex 1-Lipschitz func-
tions (see (1.9)). The goal of this section is twofold:

(i) Introduce a reasonable notion for convex and Lipschitz functions on MN̄(Z) and 
show that those functions also satisfy a deviation estimate.

(ii) Show how this new deviation estimate sheds light on concentration results obtained 
for U -statistics by [4].

Despite the lack of a geodesic structure and of a metric structure on MN̄(Z), we define 
convex and Lipschitz functionals in a rather straightforward way thanks to an analogy 
with the euclidean case. Recall that for a differentiable function f : Rp → R, f is convex 
if and only if its Hessian is non-negative, while f is Lipschitz if and only if the norm of 
the gradient of f is bounded by a constant.

On the Poisson space, the difference operators provide an ersatz of a differentiable 
structure. For a functional F defined on MN̄(Z), we define these operators as follows:

D−
x F (ξ) = F (ξ) − F (ξ − δx), ∀x ∈ ξ;

D+
x F (ξ) = F (ξ + δx) − F (ξ), ∀x ∈ Z.

In the sequel, we show concentration of measure for convex functionals F : MN̄(Z) → R. 
By definition, we say that a functional F is non-decreasing if

∀ξ, χ ∈ MN̄(Z), (ξ ≤ χ =⇒ F (ξ) ≤ F (χ)). (4.4)

We can alternatively state this monotonicity property with the D− or D+ operators. 
Indeed, the following three properties are equivalent:
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• F is non-decreasing;
• D−

x F (ξ) ≥ 0, for all ξ ∈ MN̄(Z) and all x ∈ ξ;
• D+

x F (ξ) ≥ 0, for all ξ ∈ MN̄(Z) and all x ∈ Z.

We say that the functional F is convex whenever D+
x F is non-decreasing for all fixed x ∈

Z. Alternatively, F is convex if and only if its “second derivative” satisfies: D+
xyF (ξ) ≥ 0

for all ξ ∈ MN̄(Z), and all x and y ∈ Z. The class of non-decreasing convex functionals 
contains in particular the class of U -statistics with non-negative kernel. The U -statistics
of order q ∈ N>0 associated with a symmetric kernel h : Zq → R+ is a functional of the 
form

F (ξ) =
�=∑

i1,...,iq≤n

h(xi1 , . . . , xiq ) := ξ(q)(h), ∀ξ =
n∑

i=1
δxi

∈ MN̄(Z),

where the superscript 
= indicates summation over pairwise disjoint indices. By Mecke’s 
formula [25, Theorem 4.4], when h ∈ L1(νq), we have that E|F (η)| ≤ νq(|h|) < ∞, 
and the random variable F (η) is almost surely finite. It is immediate that, for all x ∈ Z, 
D+

x F (ξ) = qξ(q−1)(h(x, ·)). Thus, we see that when h ≥ 0, then the U -statistics F is non-
decreasing in the sense of (4.4). We also have that D+

y D
+
x F (ξ) = q(q−1)ξ(q−2)(h(x, y, ·)). 

So that, when h ≥ 0, the U -statistics F is also convex in our sense. Similarly, we define 
a notion of being Lipschitz by imposing a bound on the square of the “norm of the 
gradient” which in our setting is given by 

∑
η (D−

x F (η))2.
We now give a slight extension of a result of [4] to convex functionals and to Poisson 

point processes with intensity measure possibly having atoms.

Theorem 4.5 ([4, Proposition 5.6]). Suppose that η is a Poisson process with a σ finite 
intensity measure. Let F : MN̄(Z) → R+ be a non-negative convex functional such that 
there exist δ > 0 and β ∈ [0, 2) such that∑

x∈η

(D−
x F (η))2 ≤ δF (η)β a.s. (4.5)

Let m be a median of F . Then, for all r ≥ 0, we have that

P (F (η) ≥ m + r) ≤ 2 exp
(
− r2

4δ(r + m)α
)

;

P (F (η) < m− r) ≤ 2 exp
(
− r2

4δmα

)
.

The proof of the theorem goes simply by observing that [4, Lemma 5.7] still holds for 
convex functionals. The rest of the proof is similar and is omitted.

Lemma 4.6. Let F : MN̄(Z) → R+ be a convex functional. Then, for all ξ and χ ∈
MN̄(Z), such that χ ≤ ξ:
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F (ξ) − F (χ) ≤
ˆ

D−
x F (ξ) (ξ \ χ)(dx).

Proof. Without loss of generality, we assume that ξ 
= 0. Since χ ≤ ξ, we can write 
ξ = χ +

∑n
i=1 δxi

, where n ∈ N ∪ {+∞} and the x′
is are elements of Z. Then, denoting 

by χ0 = χ and for all 1 ≤ i ≤ n − 1, χi+1 = χi + δxi+1 , it holds

F (ξ) − F (χ) =
n−1∑
i=0

F (χi+1) − F (χi)

=
n−1∑
i=0

D+
xi+1

F (χi) ≤
n−1∑
i=0

D+
xi+1

F (ξ − δxi+1) =
n−1∑
i=0

D−
xi+1

F (ξ),

where the inequality comes from the fact that D+
x F is non-decreasing. �

In [4], provided that F satisfies an inequality as of the one of Lemma 4.6, they give 
a lower bound on dA(η) by some quantity depending on F only. Then, they use the 
deviation inequality of [33] (see Theorem 4.3) involving the convex distance dA defined 
in (4.3) to conclude in the case of a finite intensity measure and use an approximation 
by thinning to conclude. Following, our previous results, we could follow an alternative 
approach rather based on the distance cA defined in (4.1). The distance cA intimately 
relates to the infimum-convolution operator Rc (see [23, Section 5] for a discussion of this 
link in the general case). We define Rc in the next section to study logarithmic Sobolev 
inequalities linked to our transport-entropy inequality. As shown by Lemma 5.3, we are 
only able to bound Rc for convex functions so that with the approach based on cA, we 
could not improve upon Theorem 4.5.

5. Modified logarithmic Sobolev inequality

In this section we investigate the links between the transport inequality obtained in 
Theorem 3.5 and modified logarithmic Sobolev inequalities on the Poisson space.

5.1. Introduction

On the Euclidean space (and more generally on a Riemannian manifold), a celebrated 
result by Otto & Villani [32] (see also [8]) shows that a probability measure γ ∈ P(Rd)
satisfies the quadratic Talagrand’s inequality

W2
2 (ν, γ) ≤ CH(ν|γ), ∀ν (5.1)

whenever γ satisfies the logarithmic Sobolev inequality: for all function f sufficiently 
smooth,

Ent
(
ef(X)

)
≤ C

E
[
ef(X) |∇f(X)|2

]
, X ∼ γ,
4
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denoting

Ent
(
eZ

)
= E[Z eZ ] − E[Z] logE[eZ ],

for any random variable Z such that E[|Z|eZ ] < +∞.
The work by [20] supplements the Otto-Villani theorem: it shows that γ satisfies (5.1)

if and only if γ satisfies the following restricted logarithmic Sobolev inequality

Ent(ef(X)) ≤ C ′E
[
|∇f(X)|2 ef(X)

]
, X ∼ γ,

for all f : Rd → R such that x → f(x) + C ′′|x|2 is convex, where C ′, C ′′ > 0 depend 
quantitatively on C. The reference [21] further investigates such an equivalence between 
transport inequalities and modified versions of the logarithmic Sobolev inequality, and 
proves that on a complete separable metric space (E, d), a probability measure γ ∈ P(E)
satisfies (5.1) (where W2 is defined with respect to the metric d) if and only if there exists 
C ′, λ > 0 (that can be precisely related to C) such that, for all bounded measurable 
function f

Ent
(
ef(X)

)
≤ C ′E

[
ef(X)(f(X) −Qλf(X))

]
, X ∼ γ,

where Qλ is the infimum convolution operator defined by

Qλf(x) = inf
y∈E

{
f(y) + λd(x, y)2

}
, x ∈ E.

We refer to [23,38,39] for other results connecting transport inequalities of the form (Tc)
and variants of the logarithmic Sobolev inequality.

Our goal in what follows is to do a first step in extending these results to the Poisson 
framework.

5.2. Transport inequalities and variants of the log-Sobolev inequality on the Poisson 
space

In [23], it is shown that a transport-entropy inequality of the form (Tc), involving 
some cost function c : E ×P(E) with E being an arbitrary Polish space, always implies 
some sort of logarithmic Sobolev inequality, whose energy term contains a “gradient” 
defined using the following infimum-convolution operator Rc

RcF (ξ) = inf
Π∈P(E)

{Π(F ) + c(ξ,Π)} , ∀ξ ∈ E,

for all F : E → R.
In our case, Theorem 3.5 with t = 1 (and E = MN̄(Z)) combined with [23, Theorem 

3.8] immediately gives the following result.
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Theorem 5.1 (Infimum-convolution logarithmic Sobolev inequality). Let ν be a σ-finite 
measure on Z and let η ∼ Πν . Then, for all F : MN̄(Z) → R such that E 

[
|F |(η) eF (η)] <

∞, we have, for all λ ∈ (0, 1):

Ent
(
eF (η)

)
:= E

[
eF (η) F (η)

]
− E [F (η)]E

[
eF (η)

]
≤ 1

1 − λ
E
[
(F (η) −Rλc1F (η)) eF (η)

]
(5.2)

where c1 is the cost given in (3.16) associated with α1 given in (2.16).

We do not know if Inequality (5.2) implies back the transport inequality of Theo-
rem 3.5 (for t = 1).

In the following result, we deduce from Theorem 5.1 a modified logarithmic Sobolev 
inequality reminiscent of Wu’s inequality [46] in restriction to the class of non-decreasing 
convex functions. For all λ ∈ (0, 1), we will denote by

φλ(s) = s

1 − λ
− λ

1 − λ
log

(
1 + s

λ

)
, s ≥ 0.

We also consider

φ0(s) = lim
λ→0

φλ(s) = s, s ≥ 0.

Corollary 5.2. Let ν be a σ-finite measure on Z with no atoms and let η ∼ Πν . Let 
F : MN̄(Z) → R be convex non-decreasing. Then, for all 0 ≤ λ < 1:

Ent
(
eF (η)

)
≤ E

[
eF (η)

ˆ
φλ(D−

x F (η))η(dx)
]
.

As mentioned above, this inequality is close to the modified logarithmic Sobolev in-
equality by Wu [46]: for all F : MN̄(Z) → R,

Ent
(
eF (η)

)
≤ E

[
eF (η)

ˆ
φw(D−

x F (η))η(dx)
]
,

where

φw(s) = e−s +s− 1, s ≥ 0.

The functions φw(s) and φλ(s), λ ∈ (0, 1), are of the same order: quadratic for small val-
ues of s and linear for large values s. Nevertheless, one can observe that for s sufficiently 
large φw(s) < φλ(s), so that our inequality does not improve upon the one by [46].

To prove Corollary 5.2, we will need the following lemma.
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Lemma 5.3. Let ν be a σ-finite measure on Z with no atoms and let η ∼ Πν . Let α : R →
[0, ∞] be any convex lower semi-continuous function. Consider the function c : MN̄(Z) ×
P(MN̄(Z)) → [0, ∞] defined by

c(ξ,Π) =
ˆ

α

(ˆ [
1 − χ(x)

ξ(x)

]
+
Π(dχ)

)
ξ(dx).

For any non-decreasing convex F : MN̄(Z) → R+, we have that

F (η) −RcF (η) ≤
ˆ

α∗(D−
x F (η)) η(dx) a.s., (5.3)

where α∗(s) = supu{us − α(u)} is the Fenchel-Legendre conjugate of α.

Proof. Since the intensity measure of η has no atoms, with probability one η is simple, 
i.e. for all x ∈ Z, η(x) ∈ {0, 1}. Let us consider ξ =

∑n
i=1 δxi

∈ M(Z), with pairwise 
distinct x′

is and n = ξ(Z) ∈ N ∪ {∞}; we have the following simplification:

c(ξ,Π) =
∑
x∈ξ

α(P (χ(x) = 0)).

Now we observe that∑
x∈ξ

α(P (χ(x) = 0)) =
∑
x∈ξ

α(P ((χ ∩ ξ)(x) = 0)),

where χ ∩ξ =
∑

x∈ξ min(ξ(x), χ(x))δx. Since χ ≥ χ ∩ξ and F is non-decreasing, we have 
that F (χ) ≥ F (χ ∩ ξ). Therefore, denoting by Ξ(ξ) the set of random variables χ taking 
values in MN̄(Z) such that P (χ ≤ ξ) = 1, we get

RcF (ξ) = inf
χ∈Ξ(ξ)

{
E[F (χ)] +

ˆ
α(P (χ(x) = 0))ξ(dx)

}
.

Invoking Lemma 4.6, we thus find that

RcF (ξ) − F (ξ) ≥ inf
χ∈Ξ(ξ)

{ˆ
α(P (χ(x) = 0))ξ(dx) − E

[ˆ
D−

x F (ξ)(ξ \ χ)(dx)
]}

.

Now observe that a random measure χ ∈ Ξ(ξ) if and only if it is of the form

χ =
n∑

i=1
(1 − εi)δxi

,

for some Bernoulli random variables (εi)1≤i≤n. Therefore
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RcF (ξ) − F (ξ) ≥ inf
ε=(εi)1≤i≤n

n∑
i=1

(
α(Eεi) −D−

xi
F (ξ)Eεi

)
= inf

p∈[0,1]n

n∑
i=1

(α(pi) −D−
xi
F (ξ)pi)

≥
n∑

i=1
inf
u∈R

(α(u) −D−
xi
F (ξ)u)

= −
n∑

i=1
α∗(D−

xi
F (ξ)),

which completes the proof. �
Proof of Theorem 5.1. Since, for λ > 0, (λα1)∗(s) = λα∗

1(t/λ), t ∈ R, Lemma 5.3 gives 
that

F (η) −Rλc1F (η) ≤ λ

ˆ
α∗

1

(
D−

x F (η)
λ

)
η(dx),

for all non-decreasing convex function F . Therefore, by Theorem 5.1, for such F it holds

Ent
(
eF (η)

)
≤ λ

1 − λ
E

[
eF (η)

ˆ
α∗

1

(
D−

x F (η)
λ

)
η(dx)

]
, ∀λ ∈ (0, 1).

A simple calculation shows that α∗
1(s) = s − log(1 + s) for all s > −1. This concludes 

the proof. �
6. Some open questions

6.1. From modified logarithmic Sobolev to the transport-entropy

We ask whether it is possible to recover our Theorem 3.3 directly from the modified 
logarithmic Sobolev inequalities of [46] or from the infimum-convolution logarithmic 
Sobolev inequality (5.2). Following the ideas of [8], doing so would require a better 
understanding of the infimum-convolution operator Rc on the Poisson; as well as new 
techniques regarding Hamilton-Jacobi equations in the setting of generalized optimal 
transport, a question that has its own independent interest.

6.2. Links with displacement convexity

[22] introduces a notion of discrete displacement convexity of the entropy for finite 
graphs with respect to T̃2. This displacement convexity, that is one of the many possible 
adaptations of the Lott-Sturm-Villani synthetic curvature bound to the discrete setting, 
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entails many other functional inequalities, such as a modified logarithmic Sobolev in-
equality and a transport-entropy inequality. In view of Theorem 1.2, defining, in the 
spirit of [22], a notion of discrete curvature on the Poisson space would probably involve 
our cost M, and we hope that the present work could help clarifying the situation.

6.3. Interacting point processes

The mixed binomial processes and Poisson point processes studied in this work ex-
hibit a very strong independence. By definition, if A and B are disjoint measurable sets 
with finite ν-measure then η(A) is independent of η(B). More generally, the q-points 
correlation measure of a mixed binomial process with sampling measure μ is propor-
tional to μq. We use this independence by identifying a mixed binomial process with the 
image of independent and identically distributed random variables. Developing tools to 
study transport-entropy inequalities for point processes not relying on the independence 
seems an attractive path, as it would allow to consider other point processes such as 
determinantal point processes. Let us point out that, to the best of our knowledge, the 
understanding of transport inequalities for point processes with interaction remains for 
the moment very partial. There exists some W1 transport-entropy inequality for Gibbs 
interaction as shown by [28]. In the setting of empirical measures (normalized point 
process), we can also mention the recent work by [11] about Coulomb gases.
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