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Abstract
On a generic metric measured space, we introduce a notion of improved concentration
of measure that takes into account the parallel enlargement of k distinct sets. We show
that the k-th eigenvalues of the metric Laplacian gives exponential improved concentration
with k sets. On compact Riemannian manifolds, this allows us to recover estimates on the
eigenvalues of the Laplace-Beltrami operator in the spirit of an inequality of [11].
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1 Introduction

Let (M, g) be a smooth compact connected Riemannian manifold with its normalized vol-
ume measure μ and its geodesic distance d. The Laplace-Beltrami operator � is then a
non-positive operator whose spectrum is discrete. Let us denote by λ(k), k = 0, 1, 2 . . ., the
eigenvalues of −� written in increasing order. With these notations λ(0) = 0 (achieved for
constant functions) and (by connectedness) λ(1) > 0 is the so-called spectral gap of M .
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1 MAP5 (UMR CNRS 8145), Université Paris Descartes, 45 rue des Saints-Pères,
75270 Paris Cedex 6, France
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The study of the spectral gap of Riemannian manifolds is, by now, a very classical topic
which has found important connections with numerous geometrical and analytical ques-
tions and properties. The spectral gap constant λ(1) is for instance related to Poincaré type
inequalities and governs the speed of convergence of the heat flow to equilibrium. It is
also related to Ricci curvature via the classical Lichnerowicz theorem [20] and to Cheeger
isoperimetric constant via Buser’s theorem [7]. We refer to [5, 8] and the references therein
for a complete picture.

Another important property of the spectral gap constant, first observed by Gromov and
Milman [16], is that it controls exponential concentration of measure phenomenon for the
reference measure μ. The result states as follows. Define for all Borel sets A ⊂ M , its r-
enlargement Ar as the (open) set of all x ∈ E such that there exists y ∈ A with d(x, y) < r .
Then, for any A ⊂ M such that μ(A) ≥ 1/2 it holds

μ(Ar) ≥ 1 − be−a
√

λ(1)r , ∀r > 0, (1.1)

where a, b > 0 are some universal constants (according to [19, Theorem 3.1], one can take
b = 1 and a = 1/3). Note that this implication is very general and holds on any metric
space supporting a Poincaré inequality (see [19, Corollary 3.2]). See also [1, 6, 15, 26] for
alternative derivations, generalizations or refinements of this result.

This note is devoted to a multiple sets extension of the above result. Roughly speak-
ing, we will see that if A1, . . . , Ak are sets which are pairwise separated in the sense that
d(Ai, Aj ) := inf{d(x, y) : x ∈ Ai, y ∈ Aj } > 0 for any i �= j and A is their union then the

probability of Ar goes exponentially fast to 1 at a rate given by
√

λ(k) as soon as r is such
that the sets Ai,r , i = 1, . . . , k remain separated. More precisely, it follows from Theorem
1.1 (whose setting is actually more general) that, if A1, . . . , Ak are such that μ(Ai) ≥ 1

k+1
and d(Ai,r , Aj,r ) > 0 for all i �= j , then, denoting A = A1 ∪ . . . ∪ Ak , it holds

μ(Ar) ≥ 1 − 1

k + 1
exp

(
−cmin

(
r2λ(k); r

√
λ(k)

))
, (1.2)

for some universal constant c. This kind of probability estimates first appeared, in a slightly
different but essentially equivalent formulation in the work of Chung, Grigor’yan and
Yau [10, 11] (see also the related paper [12] by Friedman and Tillich). Nevertheless, the
method of proof we use to arrive at (1.2) (based on the Courant-Fischer min-max formula
for the λ(k)’s) is quite different from the one of [10, 11] and seems more elementary and
general. This is discussed in details in Section 2.5.

The paper is organized as follows. In Section 2, we prove (1.2) in an abstract metric space
framework. This framework contains, in particular, the compact Riemannian case equipped
with the Laplace operator presented above. The Section 2.5 contains a detailed discussion of
our result with the one of Chung, Grigor’yan & Yau. In Section 3, we recall various bounds
on eigenvalues on several non-negatively curved manifolds. Section 4 gives an extension
of (1.2) to discrete Markov chains on graphs. In Section 5, we give a functional formulation
of the results of Sections 2 and 4. As a corollary of this functional formulation, we obtain
a deviation inequality as well as an estimate for difference of two Lipschitz extensions of a
Lipschitz function given on k subsets. Finally, Section 6 discusses open questions related to
this type of concentration of measure phenomenon.
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2 Multiple Sets Exponential Concentration in Abstract Spaces

2.1 Courant-Fischer Formula and Generalized Eigenvalues in Metric Spaces

Let us recall the classical Courant-Fischer min-max formula for the k-th eigenvalue (k ∈
N) of −�, noted λ(k), on a compact Riemannian manifold (M, g) equipped with its
(normalized) volume measure μ:

λ(k) = inf
V ⊂C∞(M)
dimV =k+1

sup
f ∈V \{0}

∫ |∇f |2 dμ∫
f 2 dμ

, (2.1)

where∇f is the Riemannian gradient, defined through the Riemannian metric g (see e.g [8])
and |∇f |2 = g(∇f, ∇f ). The formula (2.1) above does not make explicitly reference to
the differential operator �. It can be therefore easily generalized to a more abstract setting,
as we shall see below.

In all what follows, (E, d) is a complete, separable metric space and μ a reference Borel
probability measure on E. Following [9], for any function f : E → R and x ∈ E, we
denote by |∇f |(x) the local Lipschitz constant of f at x, defined by

|∇f |(x) =
{
0 if x is isolated
lim supy→x

|f (x)−f (y)|
d(x,y)

otherwise.

Note that when E is a smooth Riemannian manifold, equipped with its geodesic distance
d, then, the local Lipschitz constant of a differentiable function f at x coincides with the
norm of ∇f (x) in the tangent space TxE. With this notion in hand, a natural generalization
of (2.1) is as follows (we follow [23, Definition 3.1]):

λ
(k)
d,μ := inf

V ⊂H 1(μ)
dimV =k+1

sup
f ∈V \{0}

∫ |∇f |2 dμ∫
f 2 dμ

, k ≥ 0, (2.2)

where H 1(μ) denotes the space of functions f ∈ L2(μ) such that
∫ |∇f |2 dμ < +∞. In

order to avoid heavy notations, we drop the subscript and we simply write λ(k) instead of
λ

(k)
d,μ within this section.

Remark 1 At our level of generality, the quantities {λ(k)
d,μ; k ∈ N} do not always correspond

to eigenvalues of some linear heat operator. However, these quantities are still relevant in
order to derive our multi-set concentration estimates.

2.2 Statement of theMain Results

To state our first main result, we need further notations: for any k ≥ 1, we denote by �k the
set of vectors (a1, . . . , ak) ∈ [0, 1]k satisfying the following linear constraints

k∑
j=1

aj ≤ 1 and ai +
k∑

j=1

aj ≥ 1, ∀i ∈ {1, . . . , k}.

Recall the classical notation d(A, B) = inf{d(x, y) : x ∈ A, y ∈ B} of the distance
between two sets A, B ⊂ E.

The following theorem is the main result of the paper and is proved in Section 2.3.
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Theorem 2.1 There exists a universal constant c > 0 such that, for any k ≥ 1 and for all
sets A1, . . . , Ak ⊂ E such that mini �=j d(Ai, Aj ) > 0 and (μ(A1), . . . , μ(Ak)) ∈ �k , the
set A = A1 ∪ A2 ∪ · · · ∪ Ak satisfies

μ(Ar) ≥ 1 − (1 − μ(A)) exp
(
−cmin(r2λ(k); r

√
λ(k))

)
,

for all 0 < r ≤ 1
2 mini �=j d(Ai, Aj ), where λ(k) ≥ 0 is defined by (2.2).

Note that, since (1/(k+1), . . . , 1/(k+1)) ∈ �k , Theorem 2.1 immediately implies Inequal-
ity (1.2). Note also, that for k = 1, we obtain an estimate similar to (1.1), but in our bound,
taking r = 0 gives an equality between the left-hand side and the right-hand side, while (1.1)
is only meaningful for r ≥ log 2/(a

√
λ(1)).

Inverting our concentration estimate, we obtain the following statement that provides a
bound on the λ(k)’s.

Proposition 2.2 Let (E, d, μ) be a metric measured space and λ(k) be defined as in (2.2).
Let A1, . . . , Ak be measurable sets such that (μ(A1), . . . , μ(Ak)) ∈ �k , then, with r =
1
2 mini �=j d(Ai, Aj ) and A0 = E \ (∪Ai)r ,

λ(k) ≤ 1

r2
ψ

(
1

c
min

i
ln

μ(Ai)

μ(A0)

)
,

where ψ(x) = max(x, x2).

Proof Let A = ∪iAi . Inverting the formula in Theorem 2.1, we obtain

λ(k) ≤ 1

r2
ψ

(
1

c
ln

1 − μ(A)

1 − μ(Ar)

)
,

where ψ(x) = max(x, x2). By definition of �k ,

1 − μ(A) = 1 −
∑

i

μ(Ai) ≤ min
i

μ(Ai).

Therefore, letting A0 = E \ Ar , we obtain the announced inequality by non-decreasing
monotonicity of ψ and ln.

The collection of sets �k , k ≥ 1 has the following useful stability property:

Lemma 2.3 Let I1, I2, . . . , In be a partition of {1, . . . , k}, k ≥ 1. Let a = (a1, . . . , ak) ∈
R

k and define b = (b1, . . . , bn) ∈ R
n by setting bi = ∑

j∈Ii
aj , i ∈ {1, . . . , n}. If a ∈ �k

then b ∈ �n.

Proof The proof is obvious and left to the reader.

Thanks to this lemma it is possible to iterate Theorem 2.1 and to obtain a general bound for
μ(Ar) for all values of r > 0. This bound will depend on the way the sets A1,r , . . . , Ak,r

coalesce as r increases. This is made precise in the following definition.

Definition 2.1 (Coalescence graph of a family of sets) Let A1, . . . , Ak be subsets of E.
The coalescence graph of this family of sets is the family of graphs Gr = (V ,Er), r > 0,
where V = {1, 2, . . . , k} and the set of edges Er is defined as follows: {i, j} ∈ Er if
d(Ai,r , Aj,r ) = 0.
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Corollary 2.4 Let A1, . . . , Ak be subsets of E such that mini �=j d(Ai, Aj ) > 0 and
(μ(A1), . . . , μ(Ak)) ∈ �k . For any r > 0, let N(r) be the number of connected com-
ponents in the coalescence graph Gr associated to A1, . . . , Ak . The function (0, ∞) →
{1, . . . , k} : r 
→ N(r) is non-increasing and right-continuous. Define ri = sup{r > 0 :
N(r) ≥ k − i + 1}, i = 1, . . . , k and r0 = 0 then it holds

μ(Ar) ≥ 1 − (1 − μ(A)) exp

(
−c

k∑
i=1

φ
(
[r ∧ ri − ri−1]+

√
λ(k−i+1)

))
, ∀r > 0, (2.3)

where φ(x) = min(x; x2), x ≥ 0 and c is the universal constant appearing in Theorem 2.1.

Observe that, contrary to usual concentration results, the bound given above depends on the
geometry of the set A.

2.3 Proofs

First, we prove Corollary 2.4. The main argument is to repeatedly apply Theorem 2.1 until
two sets or more coalesce.

Proof of Corollary 2.4 We proceed by induction over the number of components k. For
k = 1, (2.3) follows immediately from Theorem 2.1. Let k > 1 and let us assume that (2.3)
is true for any collection of subsets B1, . . . , Bl satisfying the assumptions of Corollary
2.4 for all l ∈ {1, . . . , k − 1}. Let A1, A2, . . . , Ak be a collection of sets satisfying the
assumptions of Corollary 2.4. According to Theorem 2.1, it holds

μ(Ar) ≥ 1 − (1 − μ(A)) exp
(
−cφ(r

√
λ(k))

)
,

for all 0 < r ≤ 1
2 mini �=j d(Ai, Aj ).

Let k1 = N( 12 mini �=j d(Ai, Aj )) and let i1 = k − k1. Then, for all i ∈ {1, . . . , i1},
ri = 1

2 mini �=j d(Ai, Aj ). So that, for all 0 < r ≤ ri1 , the preceding bound can be rewritten
as follows (note that only the term of index i = 1 gives a non zero contribution)

μ(Ar) ≥ 1 − (1 − μ(A)) exp

(
−c

i1∑
i=1

φ
(
[r ∧ ri − ri−1]+

√
λ(k−i+1)

))

= 1 − (1 − μ(A)) exp

(
−c

k∑
i=1

φ
(
[r ∧ ri − ri−1]+

√
λ(k−i+1)

))
(2.4)

which shows that (2.3) is true for 0 < r ≤ ri1 . Now let I1, . . . , Ik1 be the connected
components of Gr1 and define, for all i ∈ {1, . . . , k1}, Bi = ∪j∈Ii

Aj,r1 . It follows eas-
ily from Lemma 2.3 that (μ(B1), . . . , μ(Bk1)) ∈ �k1 . Since mini �=j d(Bi, Bj ) > 0, the
induction hypothesis implies that

μ(Bs) ≥ 1 − (1 − μ(B)) exp

(
−c

k1∑
i=1

φ
(
[s ∧ si − si−1]+

√
λ(k1−i+1)

))
, ∀s > 0,

where B = B1 ∪ · · · ∪Bk1 = Ar1 and si = sup{s > 0 : N ′(s) ≥ k1 − i +1}, i ∈ {1, . . . , k1}
(s0 = 0) with N ′(s) the number of connected components in the graph G′

s associated to
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B1, . . . , Bk1 . It is easily seen that ri1+i = ri1 + si , for all i ∈ {0, 1 . . . , k1}. Therefore, we
have that, for r > ri1 ,

μ(Ar) ≥ μ
(
Br−ri1

)

≥ 1 − (1 − μ(Ari1
)) exp

⎛
⎝−c

k∑
i=i1+1

φ
(
[r ∧ ri − ri−1]+

√
λ(k−i+1)

)⎞
⎠

≥ 1 − (1 − μ(A)) exp

(
−c

k∑
i=1

φ
(
[r ∧ ri − ri−1]+

√
λ(k−i+1)

))
,

where the last line is true by (2.4).

To prove Theorem 2.1, we need some preparatory lemmas. Given a subset A ⊂ E, and
x ∈ E, the minimal distance from x to A is denoted by

d(x,A) = inf
y∈A

d(x, y).

Lemma 2.5 Let A ⊂ E and ε > 0, then (E \ Aε)ε ⊂ E \ A.

Proof Let x ∈ (E \ Aε)ε . Then, there exists y ∈ E \ Aε (in particular d(y,A) ≥ ε) such
that d(x, y) < ε. Since the function z 
→ d(z,A) is 1-Lipschitz, one has

d(x, A) ≥ d(y,A) − d(x, y) > 0

and so x ∈ E \ A.

Remark 2 In fact, we proved that (E \ Aε)ε ⊂ E \ Ā. The converse is, in general, not true.

Lemma 2.6 Let A1, . . . , Ak be a family of sets such that (μ(A1), . . . , μ(Ak)) ∈ �k and
r := 1

2 mini �=j d(Ai, Aj ) > 0. Let 0 < ε ≤ r and set A = ∪1≤i≤kAi and A0 = E \ (Aε).
Then,

max
i=0,...,k

μ(Ai,ε)

μ(Ai)
≤ 1 − μ(A)

1 − μ(Aε)
. (2.5)

Proof First, this is true for i = 0. Indeed, by definition A0 = E \ (Aε) and, according
to Lemma 2.5, (A0)ε ⊂ Ac (the equality is not always true), which proves (2.5) in this case.
Now, let us show (2.5) for the other values of i. Since ε ≤ r , the Aj,ε’s are disjoint sets.
Thence, (2.5) is equivalent to

⎛
⎝1 −

k∑
j=1

μ(Aj,ε)

⎞
⎠μ(Ai,ε) ≤

⎛
⎝1 −

k∑
j=1

μ(Aj )

⎞
⎠μ(Ai).

This inequality is true as soon as
(
1 − μ(Ai,ε) − mi

)
μ(Ai,ε) ≤ (1 − μ(Ai) − mi)μ(Ai),

denoting mi = ∑k
j �=iμ(Aj ). The function fi(u) = (1 − u − mi)u, u ∈ [0, 1], is

decreasing on the interval [(1 − mi)/2, 1]. We conclude from this that (2.5) is true for all
i ∈ {1, . . . , k}, as soon as μ(Ai) ≥ (1 − mi)/2 for all i ∈ {1, . . . , k} which amounts to
(μ(A1), . . . , μ(Ak)) ∈ �k .
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For p > 1, we define the function χp : [0, ∞[→ [0, 1] by
χp(x) = (1 − xp)

p
, for x ∈ [0, 1] and χp(x) = 0 for x > 1.

It is easily seen that χp(0) = 1, χ ′
p(0) = χp(1) = χ ′

p(1) = 0, that χp takes values in [0, 1]
and that χp is continuously differentiable on [0, ∞[. We use the function χp to construct
smooth approximations of indicator functions on E, as explained in the next statement.

Lemma 2.7 Let A ⊂ E and consider the function f (x) = χp(d(x,A)/ε), x ∈ E, where
ε > 0 and p > 1. For all x ∈ E, it holds

|∇f |(x) ≤ p2ε−11Aε\A

Proof Thanks to the chain rule for the local Lipschitz constant (see e.g. [2, Proposition
2.1]), ∣∣∣∣∇χp

(
d(·, A)

ε

)∣∣∣∣ (x) ≤ ε−1χ ′
p

(
d(·, A)

ε

)
|∇d(·, A)|(x).

The function d(·, A) being Lipschitz, its local Lipschitz constant is ≤ 1 and, thereby,

|∇f |(x) ≤ χ ′
p

(
d(x,A)

ε

)
.

In particular, thanks to the aforementioned properties of χ , |∇f | vanishes on A (and even
on A) and on {x ∈ E : d(x,A) ≥ ε} = E \ Aε . On the other hand, a simple calculation
shows that |χ ′

p| ≤ p2 which proves the claim.

Proof of Theorem 2.1 Take Borel sets A1, . . . , Ak with 1
2 mini �=j d(Ai, Aj ) ≥ r > 0 and

(μ(A1), . . . , μ(Ak)) ∈ �k and consider A = A1 ∪ · · · ∪ Ak . Let us show that, for any
0 < ε ≤ r , it holds (

1 + λ(k)ε2
)

(1 − μ(Aε)) ≤ (1 − μ(A)). (2.6)

Let A0 = E \ (Aε) and set fi(x) = χp(d(x,Ai)/ε), x ∈ E, i ∈ {0, . . . , k}, where p > 1.
According to Lemma 2.7 and the fact that fi = 1 on Ai , we obtain

∫
|∇fi |2 dμ = p4

ε2
μ(Ai,ε \ Ai) and

∫
f 2

i dμ ≥ μ(Ai). (2.7)

Since the fi’s have disjoint supports they are orthogonal in L2(μ) and, in particular, they
span a k + 1 dimensional subspace of H 1(μ). Thus, by definition of λ(k),

λ(k) ≤ sup
a∈Rk+1

∫ |∇
(∑k

i=0aifi

)
|2 dμ

∫ (∑k
i=0aifi

)2
dμ

≤ sup
a∈Rk+1

∫ (∑k
i=0|ai ||∇fi |

)2
dμ

∫ (∑k
i=0aifi

)2
dμ

,

where the second inequality comes from the following easy to check sub-linearity property
of the local Lipschitz constant:

|∇ (af + bg) | ≤ |a||∇f | + |b||∇g|.
Since the f ′

i s and the |∇fi |′s are two orthogonal families, we conclude using (2.7), that

λ(k)ε2

p4
≤ sup

a∈Rk+1

∑k
i=0a

2
i

(
μ(Ai,ε) − μ(Ai)

)
∑k

i=0a
2
i μ(Ai)

,
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which amounts to

1 + λ(k)ε2

p4
≤ max

i=0,...,k

μ(Ai,ε)

μ(Ai)
. (2.8)

Applying Lemma 2.6 and sending p to 1 gives (2.6). Now, if n ∈ N and 0 < ε are such that
nε ≤ r , then iterating (2.6) immediately gives

(
1 + λ(k)ε2

)n

(1 − μ(Anε)) ≤ 1 − μ(A).

Optimizing this bound over n for a fixed ε gives

(1 − μ(Ar)) ≤ (1 − μ(A)) exp
(
− sup

{
�r/ε� log

(
1 + λ(k)ε2

)
: ε ≤ r

})
.

Thus, letting

	(x) = sup
{
�t� log

(
1 + x

t2

)
: t ≥ 1

}
, x ≥ 0, (2.9)

it holds
(1 − μ(Ar)) ≤ (1 − μ(A)) exp

(
−	

(
λ(k)r2

))
.

Using Lemma 2.8 below, we deduce that 	
(
λ(k)r2

) ≥ cmin(r2λ(k); r
√

λ(k)), with c =
log(5)/4, which completes the proof.

Lemma 2.8 The function 	 defined by (2.9) satisfies

	(x) ≥ log(5)

4
min(x; √

x), ∀x ≥ 0.

Proof Taking t = 1, one concludes that 	(x) ≥ log(1 + x), for all x ≥ 0. The function
x 
→ log(1 + x) being concave, the function x 
→ log(1+x)

x
is non-increasing. Therefore,

log(1 + x) ≥ log(5)
4 x for all x ∈ [0, 4]. Now, let us consider the case where x ≥ 4. Observe

that �t� ≥ t/2 for all t ≥ 1 and so, for x ≥ 4,

	(x) ≥ 1

2
sup
t≥1

{
t log

(
1 + x

t2

)}
≥ log(5)

4

√
x,

by choosing t = √
x/2 ≥ 1. Thereby,

	(x) ≥ log(5)

4

[
x1[0,4](x) + √

x1[4,∞)(x)
] ≥ log(5)

4
min(x; √

x),

which completes the proof.

Remark 3 The conclusion of Lemma 2.8 can be improved. Namely, it can be shown that

	(x)=max

⎛
⎜⎝

(
1+�

√
x

a
�
)
log

⎛
⎜⎝1 + x(

1+�
√

x
a

�
)2

⎞
⎟⎠ ;

(
�
√

x

a
�
)
log

⎛
⎜⎝1+ x(

�
√

x
a

�
)2

⎞
⎟⎠

⎞
⎟⎠ ,

(the second term in the maximum being treated as 0 when
√

x < a) where 0 < a < 2 is the
unique point where the function (0, ∞) → R : u 
→ log(1+ u2)/u achieves its supremum.
Therefore,

	(x) ∼ log(1 + a2)

a

√
x

when x → ∞. The reader can easily check that log(1+a2)
a

� 0.8. In particular, it does not
seem possible to reach the constant c = 1 in Theorem 2.1 using this method of proof.
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2.4 TwoMoreMulti-Set Concentration Bounds

The condition (μ(A1), . . . , μ(Ak)) ∈ �k can be seen as the multi-set generalization of the
condition, standard in concentration of measure, that the size of the enlarged set has to be
bigger than 1/2. Indeed, the reader can easily verify that ( 1

k+1 , . . . ,
1

k+1 ) ∈ �k . However, in
practice, this condition can be difficult to check. We provide two more multi-set concentra-
tion inequalities that hold in full generality. The method of proof is the same as for Theorem
2.1 and is based on (2.8).

Proposition 2.9 Let (E, d, μ) be a metric measured space and λ(k) be defined as in (2.2).
Let (A1, . . . , Ak) be k Borel sets, A = ∪iAi and A0 = E \ Ar . Then, with a(1) =
min1≤i≤k μ(Ai), the following two bounds hold:

1 − μ(Ar) ≤ (1 − μ(A))
1∏k

i=1 μ(Ai)
exp

(
−cmin

(
r2λ(k), r

√
λ(k)

))
;

1 − μ(Ar) ≤ (1 − μ(A))
1

μ(A)μ(A)/a(1)
exp

(
−cmin

(
r2λ(k), r

√
λ(k)

))
.

Proof Fix N ∈ N and ε > 0 such that Nε ≤ r . For i = 1, . . . , k and n ≤ N , we define

αi(n) = μ(Ai,nε)

μ(Ai,(n−1)ε)
;

Mn = max
1≤i≤k

αi(n) ∨ 1 − μ(A(n−1)ε)

1 − μ(Anε)
;

Ln = {i ∈ {1, . . . , k}|Mn = αi(n)};
Ni = �{n ∈ {1, . . . , N}|i = infLn};

N0 = N −
k∑

i=1

Ni .

Roughly speaking, the number Ni (0 ≤ i ≤ k) counts the number of time where the set Ai

growths in iterating (2.8). Lemma 2.6 asserts that in the case where (μ(A1), . . . , μ(Ak)) ∈
�k , then N0 = N . However, we still obtain from (2.8), for 1 ≤ i ≤ k,

1

μ(Ai)
≥

N∏
n=1

αi(n) ≥
(
1 + λ(k)ε2

)Ni

. (2.10)

The first inequality is true because μ(Ai,Nε) ≤ 1 and a telescoping argument. The second
inequality is true because, as n ranges from 1 to N , by definition of the numberNi and (2.8),
there are, at least Ni terms appearing in the product that can be bounded by (1 + λ(k)ε2).
The other terms are bounded above by 1. The case of i = 0 is handled in a similar fashion
and we obtain:

1 − μ(ANε) ≤ (1 − μ(A))
(
1 + λ(k)ε2

)−N0

= (1 − μ(A))
(
1 + λ(k)ε2

)−N
k∏

i=1

(
1 + λ(k)ε2

)Ni

. (2.11)
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The announced bounds will be obtain by bounding the product appearing in the right-hand
side and an argument similar to the end of the proof of Theorem 2.1. From (2.10), we have
that,

k∏
i=1

(
1 + λ(k)ε2

)Ni ≤ 1∏k
i=1 μ(Ai)

. (2.12)

Also, from (2.10),

μ(Ai,Nε) ≥
(
1 + λ(k)ε2

)Ni

μ(Ai).

Because Nε ≤ r , the sets A1,Nε, . . . , Ak,Nε are pairwise disjoint and, thereby,

1 ≥
∑

μ(Ai,Nε) ≥
k∑

i=1

(
1 + λ(k)ε2

)Ni

μ(Ai).

Fix θ > 0 to be chosen later. By convexity of exp,

1 + (1 − μ(A))
(
1 + λ(k)ε2

)θ ≥ exp

((
k∑

i=1

μ(Ai)Ni + (1 − μ(A))θ

)
log

(
1 + λ(k)ε2

))

≥ exp

((
a(1)

k∑
i=1

Ni + (1 − μ(A))θ

)
log

(
1 + λ(k)ε2

))
.

Finally, with p = 1 − μ(A) and t = θ log(1 + λ(k)ε2), we obtain

k∏
i=1

(
1 + λ(k)ε2

)Ni ≤
(
e−pt + pe(1−p)t

)1/a(1)
.

We easily check that, the quantity in the right-hand side is minimal for t = log 1
1−p

at which

it takes the value (1 − p)p−1 = μ(A)−μ(A)/a(1) . Thus,

k∏
i=1

(1 + λ(k)ε2)
Ni ≤ 1

μ(A)μ(A)/a(1)
. (2.13)

Combining (2.12) and (2.13) with (2.11) and the same argument as for (2.9), we obtain the
two announced bounds.

From (2.9), we can derive bounds on the λ(k)’s. The proof is the same as the one of (2.2)
and is omitted.

Proposition 2.10 Let (E, d, μ) be a metric measured space and λ(k) be defined as in (2.2).
Let A1, . . . , Ak be measurable sets, then, with r = 1

2 mini �=j d(Ai, Aj ) and A0 = E \
(∪Ai)r ,

λ(k) ≤ 1

r2
ψ

(
1

c
ln

a(1)

μ(A0)
+ 1

c
k ln

1

a(1)

)
;

λ(k) ≤ 1

r2
ψ

(
1

c
ln

a(1)

μ(A0)
+ 1

c

μ(A)

a(1)
ln

1

μ(A)

)
,

where ψ(x) = max(x, x2) and a(1) = min1≤i≤k μ(Ai).
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2.5 Comparison with the Result of Chung-Grigor’yan-Yau

In [11], the authors obtained the following result:

Theorem 2.11 (Chung-Grigoryan-Yau [11]) Let M be a compact connected smooth Rie-
mannian manifold equipped with its geodesic distance d and normalized Riemannian
volume μ. For any k ≥ 1 and any family of sets A0, . . . , Ak , it holds

λ(k) ≤ 1

mini �=j d2(Ai, Aj )
max
i �=j

log (
4

μ(Ai)μ(Aj )
)
2

, (2.14)

where 1 = λ(0) ≤ λ(1) ≤ · · · λ(k) ≤ · · · denotes the discrete spectrum of −�.

Let us translate this result in terms of concentration of measure. Let A1, . . . , Ak be sets such
that r = 1

2 min1≤i<j≤k d(Ai, Aj ) > 0 and define A = A1 ∪ · · · ∪ Ak and A0 = M \ As ,
for some 0 < s ≤ r . Then, applying (2.14) to this family of k + 1 sets gives the following
inequality

min
(
a(2); 1 − μ(As)

) ≤ 4

a(1)
exp(−

√
λ(k)s), (2.15)

with a(1) and a(2) being respectively the smallest number and the second smallest number
among (μ(A1), . . . , μ(Ak)) (counted with multiplicity). Note that the right hand side is less

than or equal to a(2) if and only if s ≥ so := 1√
λk

log
(

4
a(1)a(2)

)
, so that (2.15) is equivalent

to the following statement:

μ(As) ≥ 1 − 4

a(1)
exp(−

√
λ(k)s), ∀s ∈ [min(so, r); r]. (2.16)

We note that (2.16) holds for any family of sets, whereas the inequality given in Theorem
2.1 is only true when (μ(A1), . . . , μ(Ak)) ∈ �k . Also due to the fact that the constant
c appearing in Theorem 2.1 is less than 1, (2.16) is asymptotically better than ours (see
also Remark 3 above). On the other hand, one sees that (2.16) is only valid for s large
enough (and its domain of validity can thus be empty when so > r) whereas our inequality
is true on the whole interval (0, r]. It does not seem also possible to iterate (2.16) as we did
in Corollary 2.4. Finally, observe that the method of proof used in [11] and [10] is based on
heat kernel bounds and is very different from ours.

Let us translate Theorem 2.11 in a form closer to our Proposition 2.2. Fix k sets
A1, . . . , Ak such that (μ(A1), . . . , μ(Ak)) ∈ �k . Let 2r = min d(Ai, Aj ), where the infi-
mum runs on i, j = 1, . . . , k with i �= j . We have to choose a (k + 1)-th set. In view
of Theorem 2.11, the most optimal choice is to choose A0 = E \ (∪Ai)r . Indeed, it is
the biggest set (in the sense of inclusion) such that min d(Ai, Aj ) = r where this time the
infimum runs on i, j = 0, . . . , k and i �= j . We let a(0) = μ(A0) and we remark that if
(μ(A1), . . . , μ(Ak)) ∈ �k then a(0) ≤ a(1). The bound (2.14) can be read: for all r > 0,

λ(k) ≤ 1

r2

(
log

4

a(1)a(0)

)2

.

Therefore, to compare it to our bound, we need to solve

φ−1
(
1

c
log

a(1)

a(0)

)2

≤
(
log

4

a(1)a(0)

)2

.
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Because the right-hand side is always ≥ 1, taking the square root and composing with the
non-decreasing function φ yields

1

c
log

a(1)

a(0)
≤ log

4

a(1)a(0)
.

That is

a1+c
(1) ≤ 4ca1−c

(0) .

In other words, on some range our bound is better and in some other range their bound is
better. However, if the constant c = 1 could be attained in Theorem 2.1, this would show
that our bound is always better. Note that comparing the bounds obtained in Proposition 2.10
and the one of [11] is not so clear as, without the assumption that (μ(A1), . . . , μ(Ak)) ∈ �k

it is not necessary that a(0) ≤ a(1) and in that case we would have to compare different sets.

3 Eigenvalue Estimates for Non-Negatively Curved Spaces

We recall the values of the λ(k)’s that appear in Theorem 2.1 in the case of two important
models of positively curved spaces in geometry. Namely:

(i) The n-dimensional sphere of radius
√

n−1
ρ

, Sn,ρ endowed with the natural geodesic

distance dn,ρ arising from its canonical Riemannian metric and its normalized volume
measure μn,ρ which has constant Ricci curvature equals to ρ and dimension n.

(ii) The n-dimensional Euclidean space R
n endowed with the n-dimensional Gaussian

measure of covariance ρ−1Id,

γn,ρ(dx) = ρn/2e−ρ|x|2/2

(2π)n/2
dx.

This space has dimension ∞ and curvature bounded below by ρ in the sense of [4].

These models arise as weighted Riemannian manifolds without boundary having a purely
discrete spectrum. In that case, it was proved in [23, Proposition 3.2] that the λk’s of (2.2)
are exactly the eigenvalues (counted with multiplicity) of a self-adjoint operator that we give
explicitly in the following. Using a comparison between eigenvalues of [23], we obtain an
estimates for eigenvalues in the case of log-concave probability measure over the Euclidean
R

n.

Example 1 (Spheres) On Sn,ρ , the eigenvalues of minus the Laplace-Beltrami operator (see
for instance [3, Chapter 3]) are of the form ρ−2(n − 1)2l(l + n − 1) for l ∈ N and the
dimension of the corresponding eigenspace Hl,n is

dimHl,n = 2l + n − 1

l

(
l + n − 2

l − 1

)
, if l > 0 dimHl,n = 1, if l = 0.

Consequently,

Dl,n := dim
l⊕

l′=0

Hl′,n =
(

n + l

l

)
+

(
n + l − 1

l − 1

)
,

and λ(k) = ρ−2(n − 1)2l(l + n − 1) if and only if Dl−1,n < k ≤ Dl,n where λ(k) is the k-th
eigenvalues of −�Sn,ρ and coincides with the variational definition given in (2.2).
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Example 2 (Gaussian spaces) On the Euclidean spaceRn, equipped with the Gaussian mea-
sure γn,ρ , the corresponding weighted Laplacian is �γn,ρ = �Rn − ρx · ∇. The eigenvalues
of −�γn,ρ are exactly of the form ρ2q and the dimension of the associated eigenspace Hq,n

is

dimHq,n =
(

n + q − 1

q

)
.

Consequently,

Dq,n := dim
q⊕

q ′=0

Hq ′,n =
(

n + q

q

)
,

and λ(k) = ρ−2q if and only if Dq−1,n < k ≤ Dq,n where λ(k) is the k-th eigenvalues of
−�γn,ρ and coincides with the variational definition given in (2.2).

Example 3 (Log-concave Euclidean spaces) We study the case where E = R
n, d is the

Euclidean distance and μ is a strictly log-concave probability measure. By this we mean
that μ(dx) = e−V (x)dx, where V : Rn → R such that V is C2 and satisfying ∇2V ≥ ρ for
some ρ > 0. It is a consequence of [4, Proposition 4] that such a condition on V implies
that the semigroup generated by the solution of the stochastic differential equation

dXt = √
2dBt − ∇V (Xt )dt,

where B is a Brownian motion on R
n, satisfies the curvature-dimension CD(∞, ρ) of

Bakry-Emery and, therefore, holds the log-Sobolev inequality, for all f ∈ C∞
c (Rn),

Entμ f 2 ≤ 2

ρ

∫
|∇f (x)|2μ(dx).

Such an inequality implies the super-Poincaré of [27, Theorem 2.1] that in turns implies that
the self-adjoint operator L = −�+∇V · ∇ has a purely discrete spectrum. In that case, the
λ(k) of (2.2) corresponds to these eigenvalues and [23] showed that

λ(k) ≥ λ(k)
γn,ρ

,

where λ
(k)
γn,ρ is the eigenvalues of −�γn,ρ of the previous example.

4 Extension toMarkov Chains

As in the classical case (see [19, Theorem 3.3]), our continuous result admits a general-
ization on finite graphs or more broadly in the setting of Markov chains on a finite state
space. We consider a finite set E and X = (Xn) be a irreducible time-homogeneous Markov
chain with state space E. We write p(x, y) = P(X1 = y|X0 = x) and we regard p

as a matrix. We assume that X admits a reversible probability measure μ on E such that
p(x, y)μ(x) = p(y, x)μ(y) and μ(y) = ∑

xp(x, y)μ(x). This induces a graph structure
on E by the following procedure. Set the elements of E as the vertex of the graph and for
x, y ∈ E connect them with an edge if p(x, y) > 0. As the chain is irreducible, this graph
is connected. We equip E with the induced graph distance d. We write L = p − I , where I

stands for the identity. The operator −L is a symmetric positive operator on L2(μ). We let
λ(k) be the eigenvalues of this operator. Then, our Theorem 2.1 extends as follows:
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Theorem 4.1 For any k ≥ 1 and for all setsA1, . . . , Ak ⊂ E such thatmini �=j d(Ai, Aj ) ≥
1 and (μ(A1), . . . , μ(Ak)) ∈ �k the set B = A1 ∪ A2 ∪ · · · ∪ Ak satisfies

μ(Bn) ≥ 1 − (1 − μ(B))
(
1 + λ(k)

)−n

,

for all 1 ≤ n ≤ 1
2 mini �=j d(Ai, Aj ) where λ(k) is the k-th eigenvalue of the operator −L

acting on L2(μ).

Proof We let �(x, y) = p(x, y)μ(x) and

E(f, g) = 1

2

∑
(f (y) − f (x))(g(y) − g(x))�(x, y) = 〈f, −Lg〉μ.

For any set A, we define the discrete boundary of A as ∂A = A1 \A∪ (AC)1 \AC . Let (Xn)

be the Markov chain with transition kernel p and initial distribution μ. By reversibility of
μ, (X0, X1) is an exchangeable pair of law � whose the marginals are given by μ. Then,
for a set U , we have

E(1U) = E1U(X0)(1U(X0) − 1U(X1)) = P(X0 ∈ U, X1 �∈ U) ≤ P(X1 ∈ ∂U) = μ(∂U).

Observe that if d(U, V ) ≥ 1,U and V are disjoint andU×V �∈ supp� so that E(1U , 1V ) =
0. By Courant-Fischer’s min-max theorem

λ(k) = min
dimV =k+1

max
f ∈V

E(f, f )

μ(f 2)
.

Choose sets A1, . . . , Ak with d(Ai, Aj ) ≥ 2n (i �= j ) and (μ(A1), . . . , μ(Ak)) ∈ �k .
Set fi = 1Ai

. The fi’s have disjoint support and so they are orthogonal in L2(μ). By the
previous variational representation of λ(k), we have

λ(k) ≤ sup
ai

E
(∑k

i=0aifi

)

∫ (∑k
i=0aifi

)2
dμ

= sup
ai

∑
aiai′E(fi, fi′)∑
aiai′

∫
fifi′dμ

= sup
ai

∑k
i=0a

2
i E(fi)∑k

i=0ai

∫
f 2

i dμ
.

In other words,

λ(k) ≤ max
i=0,...,k

μ((Ai)1) + μ((AC
i )1) − 1

μ(Ai)
≤ μ((Ai)1) − μ(Ai)

μ(Ai)
,

where the last inequality comes from the fact that, by Lemma 2.5, μ(E \(E \ A)1) ≥ μ(A).
Consider the set B = ∪k

i=1Ai and choose A0 = E \ B1. In that case, by Lemma 2.6 with
ε = 1, we have

max
i=0,...,k

μ((Ai)1)

μ(Ai)
≤ 1 − μ(B)

1 − μ(B1)
.

Thus, we proved that
(1 + λ(k))(1 − μ(B1)) ≤ (1 − μ(B)).

We derive the announced result by an immediate recursion.

5 Functional Forms of theMultiple Sets Concentration Property

We investigate the functional form of the multi-sets concentration of measure phenomenon
results obtained in Sections 2 and 4.
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Proposition 5.1 Let (E, d) be a metric space equipped with a Borel probability measure
μ. Let αk : [0, ∞) → [0, ∞). The following properties are equivalent:

1. For all Borel sets A1, . . . , Ak ⊂ E such that (μ(A1), . . . , μ(Ak)) ∈ �k , the set A =
A1 ∪ · · · ∪ Ak satisfies

μ(Ar) ≥ 1 − (1 − μ(A))αk(r), ∀0 < r ≤ 1

2
min
i �=j

d(Ai, Aj ). (5.1)

2. For all 1-Lipschitz functions f1, . . . , fk : E → R such that the sublevel sets Ai =
{fi ≤ 0} are such that (μ(A1), . . . , μ(Ak)) ∈ �k , the function f ∗ = min(f1, . . . , fk)

satisfies

μ(f ∗ < r) ≥ 1 − μ(f ∗ ≤ 0)αk(r), ∀0 < r ≤ 1

2
min
i �=j

d(Ai, Aj ).

Together with Theorem 2.1 or Theorem 4.1, one thus sees that the presence of multiple
wells can improve the concentration properties of a Lipschitz function.

Proof It is clear that (2) implies (1) when applied to fi(x) = d(x,Ai), in which case
Ai = {fi ≤ 0} and f ∗(x) = d(x, A). The converse is also very classical. First, observe that
{f ∗ < r} = ∪k

i=1{fi < r}. Then, since fi is 1-Lipschitz, it holds Ai,r ⊂ {fi < r} with
Ai = {fi ≤ 0} and so letting A = A1 ∪ · · · ∪ Ak , it holds Ar ⊂ {f ∗ < r}. Therefore,
applying (1) to this set A gives (2).

When (5.1) holds, we will say that the probability metric space (E, d, μ) satisfies the
multi-set concentration of measure property of order k with the concentration profile αk .

In the usual setting (k = 1), the concentration of measure phenomenon implies deviation
inequalities for Lipschitz functions around their median. The next result generalizes this
well known fact to k > 1.

Proposition 5.2 Let (E, d, μ) be a probability metric space satisfying the multi-set con-
centration of measure property of order k with the concentration profile αk and f : E → R

be a 1-Lipschitz function. If I1, . . . , Ik ⊂ R are k disjoint Borel sets such that (μ(f ∈
I1), . . . , μ(f ∈ Ik)) ∈ �k , then it holds

μ
(
f ∈ ∪k

i=1Ii,r

)
≥ 1 − (1 − μ(f ∈ ∪k

i=1Ii))αk(r), ∀0 < r ≤ 1

2
min
i �=j

d(Ii , Ij )

Proof Let ν be the image of μ under the map f . Since f is 1-Lipschitz, the metric space
(R, | · |, ν) satisfies the multi-set concentration of measure property of order k with the
same concentration profile αk as μ. Details are left to the reader.

Let us conclude this section by detailling some application of potential interest in approxi-
mation theory.

Suppose that f : E → R is some 1-Lipschitz function and A1, . . . Ak are (pairwise
disjoint) subsets of E such that (μ(A1), . . . , μ(Ak)) ∈ �k . Let us assume that the restric-
tions f|Ai

, i ∈ {1, . . . , k} are known and that one wishes to estimate or reconstruct f

outside A = ∪k
i=1Ai . To that aim, one can consider an explicit 1-Lipschitz extension of

f|A, that is to say a 1-Lipschitz function g : E → R (constructed based on our knowl-
edge of f on A exclusively) such that f = g on A. There are several canonical ways
to perform the extension of a Lipschitz function defined on a sub domain (known as
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Kirszbraun-McShane-Whitney extension [18, 22, 28]). One can consider for instance the
functions

g+(x) = inf
y∈A

{f (y) + d(x, y)} or g−(x) = sup
y∈A

{f (y) − d(x, y)}, x ∈ E.

It is a very classical fact that functions g− and g+ are 1-Lipschitz extensions of f|A and
moreover that any extension g of f|A satisfies g− ≤ g ≤ g+ (see e.g [17]).

The following simple result shows that, for any 1-Lipschitz extension g of f|A, the prob-
ability of error μ(|f − g| > r) is controlled by the multi-set concentration profile αk . In
particular, in the framework of our Theorem 2.1, this probability of error is controled by
λ(k).

Proposition 5.3 Let (E, d, μ) be a probability metric space satisfying the multi-set concen-
tration of measure property of order k with the concentration profile αk and f : E → R be
a 1-Lipschitz function. Let A1, . . . Ak be subsets of E such that (μ(A1), . . . , μ(Ak)) ∈ �k ;
then for any 1-Lipschitz extension g of f|A, it holds

μ(|f − g| ≥ r) ≤ (1 − μ(A))αk(r/2), ∀0 < r ≤ min
i �=j

d(Ai, Aj ).

Proof The function h : E → R defined by h(x) = |f − g|(x), x ∈ E, is 2-Lipschitz and
vanishes on A. Therefore, for any x ∈ E and y ∈ A, it holds h(x) ≤ h(y) + 2d(x, y) =
2d(x, y). Optimizing over y ∈ A gives that h(x) ≤ 2d(x,A). Therefore {h ≥ r} ⊂ {x :
d(x,A) ≥ r/2} = (

Ar/2
)c and so, if 0 < r ≤ mini �=j d(Ai, Aj ), it holds

μ(|f − g| ≥ r) ≤ (1 − μ(A))αk(r/2).

Remark 4 Let us remark that Propositions 5.1 to 5.3 can be immediately extended under
the following more general (but notationally heavier) multi-set concentration of measure
assumption: there exists functions αk : [0, ∞) → [0, ∞) and βk : [0, ∞)k → [0, ∞] such
that for all Borel sets A1, . . . , Ak ⊂ E, the set A = A1 ∪ · · · ∪ Ak satisfies

μ(Ar) ≥ 1 − βk(μ(A1), · · · , μ(Ak))αk(r), ∀0 < r ≤ 1

2
min
i �=j

d(Ai, Aj ).

This framework contains the preceding one, by choosing βk(a) = 1 − ∑k
i=1ai if a =

(a1, . . . , ak) ∈ �k and +∞ otherwise. It also contains the concentration bounds obtained
in Proposition 2.9, corresponding respectively to

βk(a) = 1 − ∑k
i=1ai∏k

i=1 ai

, and βk(a) = 1 − ∑k
i=1ai

(∑k
i=1ai

)∑k
i=1 ai/min(a1,··· ,ak)

, a = (a1, . . . , ak).

6 Open Questions

We list open questions related to the multi-set concentration of measure phenomenon.

6.1 GaussianMulti-Set Concentration

Using the terminology introduced in Section 5, Theorem 2.1 and the material exposed
in Section 3 tell us that, if μ has a density of the form e−V with respect to Lebesgue mea-
sure on Rn with a smooth function V such that HessV ≥ ρ > 0, then the probability metric
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space (Rn, | · |, μ) satisfies the multi-set concentration of measure property of order k with
the concentration profile

αk(r) = exp

(
−cmin(r2λ(k)

γn,ρ; r

√
λ

(k)
γn,ρ)

)
, r ≥ 0,

where λ
(k)
γn,ρ denotes the kth eigenvalue of the n-dimensional centered Gaussian measure

with covariance matrix ρ−1Id. Since the measure μ satisfies the log-Sobolev inequality, it
is well known that it satisfies a (classical) Gaussian concentration of measure inequality.
Therefore, it is natural to conjecture that μ satisfies a multi-set concentration of measure
property of order k ≥ 1 with a profile of the form

βk(r) = exp
(
−Ck,ρ,nr

2
)

, r ≥ 0,

for some constant Ck,ρ,n depending solely on its arguments. In addition, it would be inter-
esting to see how usual functional inequalities (Log-Sobolev, transport-entropy, . . . ) can be
modified to catch such a concentration of measure phenomenon.

6.2 Equivalence BetweenMulti-Set Concentration and Lower Bounds
on Eigenvalues in Non-Negative Curvature

Let us quickly recall the main finding of E. Milman [24, 25], that is, under non-negative
curvature assumptions, a concentration of measure estimate implies a bound on the spectral
gap. Let μ be a probability measure with a density of the form e−V on a smooth connected
Riemannian manifold M with V a smooth function such that

Ric + HessV ≥ 0. (6.1)

Assume that μ satisfies a concentration inequality of the form: for all A ⊂ M such that
μ(A) ≥ 1/2

μ(Ar) ≥ 1 − α(r), r ≥ 0,

where α is a function such that α(ro) < 1/2 for at least one value ro > 0. Then, letting λ1

be the first non zero eigenvalue of the operator −� + ∇V · ∇, it holds λ1 ≥ 1
4

(
1−2α(ro)

ro

)2
.

It would be very interesting to extend Milman’s result to a multi-set concentration setting.
More precisely, if μ satisfies the curvature condition (6.1) and the multi-set concentration
of measure property of order k with a profile of the form αk(r) = exp(−min(ar2,

√
ar)),

r ≥ 0, can we find a universal function ϕk such that λk ≥ ϕk(a)?
This question already received some attention in recent works by Funano and Shioya [13,

14]. In particular, let us mention the following improvement of the Chung-Grigor’yan-Yau
inequality obtained in [13]. There exists a universal constant c > 1 such that if μ is a
probability measure satisfying the non-negative curvature assumption (6.1), it holds: for any
family of sets A0, A1, . . . , Al with 1 ≤ l ≤ k

λ(k) ≤ ck−l+1 1

mini �=j d2
(
Ai,Aj

) max
i �=j

log

(
4

μ(Ai)μ(Aj )

)2

. (6.2)

Note that the difference with (2.14) is that λ(k) is estimated by a reduced number of sets.
Using (6.2) (with l = 1) together with Milman’s result recalled above, Funano showed
that there exists some constant Ck depending only on k such that under the curvature con-
dition (6.1), it holds λk ≤ Ckλ0 (recovering the main result of [14]). The constant Ck is
explicit (contrary to the constant of [14]) and grows exponentially when k → ∞. This result
has been then improved by Liu [21], where a constant Ck = O(k2) has been obtained. As
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observed by Funano [13], a positive answer to the open question stated above would yield
that under (6.1) the ratios λk+1/λk are bounded from above by a universal constant.
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26. Schmuckenschläger, M.: Martingales, Poincaré type inequalities, and deviation inequalities. J. Funct.

Anal. 155(2), 303–323 (1998)



Multiple Sets Exponential Concentration...

27. Wang, F.-Y.: Functional inequalities for empty essential spectrum. J. Funct. Anal. 170(1), 219–245
(2000)

28. Whitney, H.: Analytic extensions of differentiable functions defined in closed sets. Trans. Amer. Math.
Soc. 36(1), 63–89 (1934)


	Multiple Sets Exponential Concentration...
	Abstract
	Abstract
	Introduction
	Multiple Sets Exponential Concentration in Abstract Spaces
	Courant-Fischer Formula and Generalized Eigenvalues in Metric Spaces
	Statement of the Main Results
	Proofs
	Two More Multi-Set Concentration Bounds
	Comparison with the Result of Chung-Grigor'yan-Yau

	Eigenvalue Estimates for Non-Negatively Curved Spaces
	Extension to Markov Chains
	Functional Forms of the Multiple Sets Concentration Property
	Open Questions
	Gaussian Multi-Set Concentration
	Equivalence Between Multi-Set Concentration and Lower Bounds on Eigenvalues in Non-Negative Curvature

	References


